GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Diversity, MDPI AG, Vol. 14, No. 12 ( 2022-11-29), p. 1045-
    Abstract: White sturgeon (Acipenser transmontanus) are the largest freshwater fish in North America, with reproducing populations in the Sacramento-San Joaquin, Fraser, and Columbia River Basins. Of these, the Columbia River is the largest, but it is also highly fragmented by hydroelectric dams, and many segments are characterized by declining abundance and persistent recruitment failure. Efforts to conserve and supplement these fish requires an understanding of their spatial genetic structure. Here, we assembled a large set of samples from throughout the Columbia River Basin, along with representative collections from adjacent basins, and genotyped them using a panel of 325 single-nucleotide markers. Results from individual- and group-based analyses of these data indicate that white sturgeon in the uppermost Columbia River Basin, in the Kootenai and upper Snake Rivers, are the most distinct, while the remaining populations downstream in the basin can be described as a genetic gradient consistent with an isolation-by-distance effect. Notably, the population in the lowest reaches of the Columbia River is more distinct from the middle or upper reaches than from outside basins, and suggests historically a higher or more recent gene exchange through coastal routes than with populations in the interior Columbia Basin. Nonetheless, proximal reaches were generally only marginally or non-significantly divergent, suggesting that transplanting larvae or juveniles from nearby sources poses relatively little risk of outbreeding depression. Indeed, we inferred examples of dispersal between reaches via close-kin mark-recapture and genetic mark-recapture that indicate movement between nearby reaches is not unusual. Samples from the Kootenai and upper Snake Rivers exhibited notably lower genetic diversity than the remaining samples as a result of population bottlenecks, genetic drift, and/or historical divergence. Conservation actions, such as supplementation, are underway to maintain population viability and will require balanced efforts to increase demographic abundance while maintaining genetic diversity.
    Type of Medium: Online Resource
    ISSN: 1424-2818
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2518137-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Molecular Ecology Resources, Wiley, Vol. 21, No. 7 ( 2021-10), p. 2288-2298
    Abstract: Whole genome duplication is hypothesized to have played a critical role in the evolution of several major taxa, including vertebrates, and while many lineages have rediploidized, some retain polyploid genomes. Additionally, variation in ploidy can occur naturally or be artificially induced within select plant and animal species. Modern genetic techniques have not been widely applied to polyploid or ploidy‐variable species, in part due to the difficulty of obtaining genotype data from polyploids. In this study, we demonstrate a strategy for developing an amplicon sequencing panel of single nucleotide polymorphisms for high‐throughput genotyping of polyploid organisms. We then develop a method to infer ploidy of individuals from amplicon sequencing data that is generalized to apply to any ploidy and does not require prior identification of heterozygous genotypes. Combining these two techniques will allow researchers to both infer ploidy and generate ploidy‐aware genotypes with the same amplicon sequencing panel. We demonstrate this approach with white sturgeon Acipenser transmontanus , a ploidy‐variable (octoploid, decaploid and dodecaploid) imperiled species under conservation management in the Pacific Northwest and obtained a panel of 325 loci. These loci were validated by examining inheritance in known‐cross families, and the ploidy inference method was validated with known ploidy samples. We provide scripts that adapt existing pipelines to genotype polyploids and an R package for application of the ploidy inference method. We expect that these techniques will empower studies of genetic variation and inheritance in polyploid organisms that vary in ploidy level, either naturally or as a result of artificial propagation practices.
    Type of Medium: Online Resource
    ISSN: 1755-098X , 1755-0998
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 2406833-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...