GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Science Immunology, American Association for the Advancement of Science (AAAS), Vol. 4, No. 42 ( 2019-12-06)
    Abstract: Excessive type I interferon (IFNα/β) activity is implicated in a spectrum of human disease, yet its direct role remains to be conclusively proven. We investigated two siblings with severe early-onset autoinflammatory disease and an elevated IFN signature. Whole-exome sequencing revealed a shared homozygous missense Arg148Trp variant in STAT2 , a transcription factor that functions exclusively downstream of innate IFNs. Cells bearing STAT2 R148W in homozygosity (but not heterozygosity) were hypersensitive to IFNα/β, which manifest as prolonged Janus kinase–signal transducers and activators of transcription (STAT) signaling and transcriptional activation. We show that this gain of IFN activity results from the failure of mutant STAT2 R148W to interact with ubiquitin-specific protease 18, a key STAT2-dependent negative regulator of IFNα/β signaling. These observations reveal an essential in vivo function of STAT2 in the regulation of human IFNα/β signaling, providing concrete evidence of the serious pathological consequences of unrestrained IFNα/β activity and supporting efforts to target this pathway therapeutically in IFN-associated disease.
    Type of Medium: Online Resource
    ISSN: 2470-9468
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2019
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 13, No. 1 ( 2022-01-10)
    Abstract: De novo mutations are known to play a prominent role in sporadic disorders with reduced fitness. We hypothesize that de novo mutations play an important role in severe male infertility and explain a portion of the genetic causes of this understudied disorder. To test this hypothesis, we utilize trio-based exome sequencing in a cohort of 185 infertile males and their unaffected parents. Following a systematic analysis, 29 of 145 rare (MAF  〈  0.1%) protein-altering de novo mutations are classified as possibly causative of the male infertility phenotype. We observed a significant enrichment of loss-of-function de novo mutations in loss-of-function-intolerant genes ( p -value = 1.00 × 10 −5 ) in infertile men compared to controls. Additionally, we detected a significant increase in predicted pathogenic de novo missense mutations affecting missense-intolerant genes ( p -value = 5.01 × 10 −4 ) in contrast to predicted benign de novo mutations. One gene we identify, RBM5 , is an essential regulator of male germ cell pre-mRNA splicing and has been previously implicated in male infertility in mice. In a follow-up study, 6 rare pathogenic missense mutations affecting this gene are observed in a cohort of 2,506 infertile patients, whilst we find no such mutations in a cohort of 5,784 fertile men ( p -value = 0.03). Our results provide evidence for the role of de novo mutations in severe male infertility and point to new candidate genes affecting fertility.
    Type of Medium: Online Resource
    ISSN: 2041-1723
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2553671-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Haematologica, Ferrata Storti Foundation (Haematologica), Vol. 105, No. 4 ( 2020-04), p. 1055-1066
    Type of Medium: Online Resource
    ISSN: 0390-6078 , 1592-8721
    Language: English
    Publisher: Ferrata Storti Foundation (Haematologica)
    Publication Date: 2020
    detail.hit.zdb_id: 2186022-1
    detail.hit.zdb_id: 2030158-3
    detail.hit.zdb_id: 2805244-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Genome Research, Cold Spring Harbor Laboratory, Vol. 32, No. 7 ( 2022-07), p. 1343-1354
    Abstract: Chromosomal translocations are important drivers of haematological malignancies whereby proto-oncogenes are activated by juxtaposition with enhancers, often called enhancer hijacking . We analyzed the epigenomic consequences of rearrangements between the super-enhancers of the immunoglobulin heavy locus ( IGH ) and proto-oncogene CCND1 that are common in B cell malignancies. By integrating BLUEPRINT epigenomic data with DNA breakpoint detection, we characterized the normal chromatin landscape of the human IGH locus and its dynamics after pathological genomic rearrangement. We detected an H3K4me3 broad domain (BD) within the IGH locus of healthy B cells that was absent in samples with IGH-CCND1 translocations. The appearance of H3K4me3-BD over CCND1 in the latter was associated with overexpression and extensive chromatin accessibility of its gene body. We observed similar cancer-specific H3K4me3-BDs associated with hijacking of super-enhancers of other common oncogenes in B cell ( MAF , MYC , and FGFR3/NSD2 ) and T cell malignancies ( LMO2 , TLX3 , and TAL1 ). Our analysis suggests that H3K4me3-BDs can be created by super-enhancers and supports the new concept of epigenomic translocation , in which the relocation of H3K4me3-BDs from cell identity genes to oncogenes accompanies the translocation of super-enhancers.
    Type of Medium: Online Resource
    ISSN: 1088-9051 , 1549-5469
    RVK:
    Language: English
    Publisher: Cold Spring Harbor Laboratory
    Publication Date: 2022
    detail.hit.zdb_id: 1483456-X
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 408-408
    Abstract: Introduction: Chromothripsis and chromoplexy are gross structural events that deregulate multiple genes simultaneously and may help explain rapid changes in clinical behavior. Previous screening studies in multiple myeloma (MM) using copy number arrays have identified chromothripsis at a low frequency (1.3%) and suggested it adversely impacts prognosis. Here, using whole genome sequencing (WGS) data we have identified a higher frequency of these events, suggesting they are more common than previously thought. Methods: 10X ChromiumWGS (10XWGS) from 76 newly diagnosed MM (NDMM) patients were analyzed for structural rearrangements using Longranger. Oxford Nanopore long read sequencing was performed on 2 samples. Long insert WGS data from 813 NDMM patient samples from the Myeloma Genome Project (MGP) were analyzed for structural rearrangements using Manta. Whole exome sequencing was available for 712 samples. RNA-seq was available for 643 samples. Chromothripsis was determined by manual curation of breakpoint and copy number data. Chromoplexy was defined as rearrangements within 1 Mb of one another involving 3 or more chromosomes. Results: Chromoplexy was detected in 33/76 (46%) cases using 10XWGS data, and cross validated in the MGP WGS dataset being found in 30% (247/813) of samples and was most frequent on chromosomes 8 (11.7% of samples), 14 (10.6%), 11 (9.6%), 1 (9.5%), 6 (8.0%), 22 (7.6%), 12 (6.7%), and 17 (6.7%). The gene regions most involved in chromoplexy events were MYC (chr8; 7.3%), IGH (chr14, 8.8%), IGL (chr22; 4.6%), CCND1 (chr11; 3.9%), TXNDC5 (chr6; 1.7%), FCHSD2 (chr11; 1.4%), FAM46C (chr1; 1.2%), MMSET (chr4; 1.2%), and MAP3K14 (chr17; 0.7%). Chromoplexy samples involved pairings of super-enhancer donors (IGH, IGL, FAM46C, TXNDC5) and oncogenic receptors (CCND1, MMSET, MAP3K14, MYC) implicating transcriptional deregulation. To confirm, RNASeq showed an elevation of expression over median in the oncogenic receptors when paired with a donor: CCND1 (median expression = 12.0 vs. median expression with donor = 17.9), MAP3K14 (10.8 vs. 14.7), MYC (12.7 vs. 14.1) and MMSET (11.9 vs. 16.7). We also identified elevated expression of PAX5 (8.23 vs. 13.79) and two cases where BCL2 (13.32 vs. 14.68) partnered with MYC, one involved IGH similar to follicular lymphoma. To determine if chromoplexy events were happening on the same allele, we performed long read sequencing using Oxford Nanopore on a sample with a t(2;6;8;11) event. We observed a read mapped to chromosome 2, with secondary alignment to chromosomes 6 and 8. This single 32 kb read was a continuous t(2;6;8) event, proving these events occurred on the same allele. However, despite close proximity, the data did not put the t(8;11) in the same read meaning this event occurred on a different allele or sub-clone, suggesting ongoing genomic instability. Chromothripsis was detected in 16/76 (21%) cases using 10XWGS, and was consistent in MGP data, (170/813; 21%). Chromothripsis occurred on all chromosomes but at different frequencies where chromosome 1 had most events (5.1%), followed by 14 (2.4%), 11 (2.3%), 12 (2.2%), 20 (1.9%), 17 (1.9%), and 8 (1.9%). We hypothesized the presence of both chromoplexy and chromothripsis could be associated with ineffective DNA repair and indeed, using WES data, patients with both events show more mutations in TP53 (19% vs. 5%) and ATM (10% vs. 4%) implicating homologous recombination deficiency as an etiologic mechanism. Gene set enrichment analysis showed significant enrichment and positive normalized enrichment score (NES) for the DNA Repair (P = 0.01; NES = 1.7) and MYC pathways (P = 0.01; NES = 3.2) consistent with previous results. In relation to prognosis, chromoplexy and chromothripsis have a negative impact on progression free survival (28.6 months vs. 42.8 months, P=0.03 and 28.6 months vs. 40.7 months P=0.01, respectively). When patients with both chromoplexy and chromothripsis (9%) were examined there was a pronounced effect on PFS (40.7 months vs. 22.7 months, P 〈 0.001). Conclusion: Complex structural events are seen frequently in MM and could help explain disease progression. Severe cases with both chromoplexy and chromothripsis are associated with acquired genomic instability and an adverse impact on prognosis either directly or due to their association with DNA repair abnormalities. This opens the possibility of specifically therapeutically targeting the underlying DNA abnormalities. Disclosures Flynt: Celgene Corporation: Employment, Equity Ownership. Ortiz:Celgene Research SL (Spain), part of Celgene Corporation: Employment, Equity Ownership. Dervan:Celgene Corporation: Employment, Equity Ownership. Gockley:Celgene Corporation: Employment. Davies:Janssen: Consultancy, Honoraria; TRM Oncology: Honoraria; Abbvie: Consultancy; Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; ASH: Honoraria; Takeda: Consultancy, Membership on an entity's Board of Directors or advisory committees; MMRF: Honoraria; Amgen: Consultancy, Membership on an entity's Board of Directors or advisory committees. Thakurta:Celgene Corporation: Employment, Equity Ownership. Morgan:Celgene: Consultancy, Honoraria, Research Funding; Takeda: Consultancy, Honoraria; Bristol-Myers Squibb: Consultancy, Honoraria; Janssen: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 637-637
    Abstract: Background: The main genetic features of myeloma identified so far have been the presence of balanced translocations at the immunoglobulin heavy chain (IGH) region and copy number abnormalities. Novel methodologies such as massively parallel sequencing have begun to describe the pattern of tumour acquired mutations detected at presentation but their biological and clinical relevance has not yet been fully established. Methods: Whole exome sequencing was performed on 463 presentation patients enrolled into the large UK, phase III, open label, Myeloma XI trial. DNA was extracted from germline DNA and CD138+ plasma cells and whole exome sequencing was performed using SureSelect (Agilent). In addition to capturing the exome, extra baits were added covering the IGH, IGK, IGL and MYC loci in order to determine the breakpoints associated with translocations in these genes. Tumour and germline DNA were sequenced to a median of 60x and data processed to generate copy number, acquired variants and translocation breakpoints in the tumour. Progression-free and overall survival was measured from initial randomization and median follow up for this analysis was 25 months. These combined data allow us to examine the effect of translocations on the mutational spectra in myeloma and determine any associations with progression-free or overall survival. Results: We identified 15 significantly mutated genes comprising IRF4, KRAS, NRAS, MAX, HIST1H1E, RB1, EGR1, TP53, TRAF3, FAM46C, DIS3, BRAF, LTB, CYLD and FGFR3. By analysing the correlation between mutations and cytogenetic events using a probabilistic approach, we describe the co-segregation of t(11;14) with CCND1 mutations (Corr 0.28,BF=1.5x106 (Bayes Factor)) and t(4;14) with FGFR3 (Corr=0.40, BF=1.12x1014) and PRKD2 mutations (Corr=0.23, BF=3507). The mutational spectrum is dominated by mutations in the RAS (43%) and NF-κB (17%) pathway, however they are prognostically neutral. We describe for the first time in myeloma mutations in genes such as CCND1 and DNA repair pathway alterations (TP53, ATM, ATR and ZFHX4 mutations) that are associated with a negative impact on survival in contrast to those in IRF4 and EGR1 that are associated with a favourable overall-survival. By combining these novel risk factors with the previously described adverse cytogenetic features and ISS we were able to demonstrate in a multivariate analysis the independent prognostic relevance of copy number and structural abnormalities (CNSA) such as del(17p), t(4;14), amp(1q), hyperdiploidy and MYC translocations and mutations in genes such as ATM/ATR, ZFHX4, TP53 and CCND1. We demonstrate that the more adverse features a patient had the worse his outcome was for both PFS (one lesion: HR=1.6, p=0.0012, 2 lesions HR=3.3, p 〈 0.001, 3 lesions HR=15.2, p 〈 0.001) and for OS (one lesion: HR=2.01, p=0.0032, 2 lesions HR=4.79, p 〈 0.001, 3 lesions HR=9.62, p 〈 0.001). When combined with ISS, we identified 3 prognostic groups (Group 1: ISS I/II with no CNSA or mutation, Group 2: ISS III with no CNSA or mutation or ISS I/II/III with one CNSA or mutation, Group 3: Two CNSA or mutation regardless of their ISS) thus identifying three distinct prognostic groups with a high risk population representing 13% of patients that both relapsed [median PFS 10.6 months (95% CI 8.7-17.9) versus 27.7 months (95% CI 25.99-31.1), p 〈 0.001] and died prematurely [median overall survival 23.2 months (95% CI 18.2-35.3.) versus not reached, p 〈 0.001] regardless of their ISS score. Finally, we have also identified a list of potentially actionable mutations for which targeted therapy already exists opening the way into personalized medicine in myeloma. Conclusion: We have refined our understanding of genetic events in myeloma and identified clinically relevant mutations that may be used to better stratify patients at presentation. Identifying high risk populations or patients that may benefit from targeted therapy may open the way into personalized medicine for myeloma. Disclosures Walker: Onyx Pharmaceuticals: Consultancy, Honoraria.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood Cancer Journal, Springer Science and Business Media LLC, Vol. 12, No. 5 ( 2022-05-30)
    Abstract: Deciphering genomic architecture is key to identifying novel disease drivers and understanding the mechanisms underlying myeloma initiation and progression. In this work, using the CoMMpass dataset, we show that structural variants (SV) occur in a nonrandom fashion throughout the genome with an increased frequency in the t(4;14), RB1 , or TP53 mutated cases and reduced frequency in t(11;14) cases. By mapping sites of chromosomal rearrangements to topologically associated domains and identifying significantly upregulated genes by RNAseq we identify both predicted and novel putative driver genes. These data highlight the heterogeneity of transcriptional dysregulation occurring as a consequence of both the canonical and novel structural variants. Further, it shows that the complex rearrangements chromoplexy, chromothripsis and templated insertions are common in MM with each variant having its own distinct frequency and impact on clinical outcome. Chromothripsis is associated with a significant independent negative impact on clinical outcome in newly diagnosed cases consistent with its use alongside other clinical and genetic risk factors to identify prognosis.
    Type of Medium: Online Resource
    ISSN: 2044-5385
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2600560-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Journal of Clinical Oncology, American Society of Clinical Oncology (ASCO), Vol. 33, No. 33 ( 2015-11-20), p. 3911-3920
    Abstract: At the molecular level, myeloma is characterized by copy number abnormalities and recurrent translocations into the immunoglobulin heavy chain locus. Novel methods, such as massively parallel sequencing, have begun to describe the pattern of tumor-acquired mutations, but their clinical relevance has yet to be established. Methods We performed whole-exome sequencing for 463 patients who presented with myeloma and were enrolled onto the National Cancer Research Institute Myeloma XI trial, for whom complete molecular cytogenetic and clinical outcome data were available. Results We identified 15 significantly mutated genes: IRF4, KRAS, NRAS, MAX, HIST1H1E, RB1, EGR1, TP53, TRAF3, FAM46C, DIS3, BRAF, LTB, CYLD, and FGFR3. The mutational spectrum is dominated by mutations in the RAS (43%) and nuclear factor-κB (17%) pathways, but although they are prognostically neutral, they could be targeted therapeutically. Mutations in CCND1 and DNA repair pathway alterations (TP53, ATM, ATR, and ZNFHX4 mutations) are associated with a negative impact on survival. In contrast, those in IRF4 and EGR1 are associated with a favorable overall survival. We combined these novel mutation risk factors with the recurrent molecular adverse features and international staging system to generate an international staging system mutation score that can identify a high-risk population of patients who experience relapse and die prematurely. Conclusion We have refined our understanding of genetic events in myeloma and identified clinically relevant mutations that may be used to better stratify patients at presentation.
    Type of Medium: Online Resource
    ISSN: 0732-183X , 1527-7755
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2015
    detail.hit.zdb_id: 2005181-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Haematologica, Ferrata Storti Foundation (Haematologica), Vol. 108, No. 3 ( 2022-04-28), p. 717-731
    Abstract: Rarely, immunophenotypically immature B-cell precursor acute lymphoblastic leukemia (BCP-ALL) carries an immunoglobulin- MYC rearrangement (IG-MYC-r). This can result in diagnostic confusion with Burkitt lymphoma/leukemia and use of individualized treatment schedules of unproven efficacy. Here we compare the molecular characteristics of these conditions and investigate historic clinical outcome data. We identified 90 cases registered in a national BCP-ALL clinical trial/registry. When present, diagnostic material underwent cytogenetic, exome, methylome and transcriptome analyses. The outcomes analyzed were 3-year event-free survival and overall survival. IG-MYC-r was identified in diverse cytogenetic backgrounds, co-existing with either established BCP-ALL-specific abnormalities (high hyperdiploidy, n=3; KMT2A-rearrangement, n=6; iAMP21, n=1; BCR-ABL1, n=1); BCL2/BCL6-rearrangements (n=15); or, most commonly, as the only defining feature (n=64). Within this final group, precursor-like V(D)J breakpoints predominated (8/9) and KRAS mutations were common (5/11). DNA methylation identified a cluster of V(D)J-rearranged cases, clearly distinct from Burkitt leukemia/lymphoma. Children with IG-MYC-r within that subgroup had a 3-year event-free survival of 47% and overall survival of 60%, representing a high-risk BCP-ALL. To develop effective management strategies this group of patients must be allowed access to contemporary, minimal residual disease-adapted, prospective clinical trial protocols.
    Type of Medium: Online Resource
    ISSN: 1592-8721 , 0390-6078
    Language: Unknown
    Publisher: Ferrata Storti Foundation (Haematologica)
    Publication Date: 2022
    detail.hit.zdb_id: 2186022-1
    detail.hit.zdb_id: 2030158-3
    detail.hit.zdb_id: 2805244-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Genome Research, Cold Spring Harbor Laboratory, Vol. 32, No. 7 ( 2022-07), p. 1355-1366
    Abstract: Genomic rearrangements are known to result in proto-oncogene deregulation in many cancers, but the link to 3D genome structure remains poorly understood. Here, we used the highly predictive heteromorphic polymer (HiP-HoP) model to predict chromatin conformations at the proto-oncogene CCND1 in healthy and malignant B cells. After confirming that the model gives good predictions of Hi-C data for the nonmalignant human B cell–derived cell line GM12878, we generated predictions for two cancer cell lines, U266 and Z-138. These possess genome rearrangements involving CCND1 and the immunoglobulin heavy locus ( IGH ), which we mapped using targeted genome sequencing. Our simulations showed that a rearrangement in U266 cells where a single IGH super-enhancer is inserted next to CCND1 leaves the local topologically associated domain (TAD) structure intact. We also observed extensive changes in enhancer-promoter interactions within the TAD, suggesting that it is the downstream chromatin remodeling which gives rise to the oncogene activation, rather than the presence of the inserted super-enhancer DNA sequence per se. Simulations of the IGH - CCND1 reciprocal translocation in Z-138 cells revealed that an oncogenic fusion TAD is created, encompassing CCND1 and the IGH super-enhancers. We predicted how the structure and expression of CCND1 changes in these different cell lines, validating this using qPCR and fluorescence in situ hybridization microscopy. Our work demonstrates the power of polymer simulations to predict differences in chromatin interactions and gene expression for different translocation breakpoints.
    Type of Medium: Online Resource
    ISSN: 1088-9051 , 1549-5469
    RVK:
    Language: English
    Publisher: Cold Spring Harbor Laboratory
    Publication Date: 2022
    detail.hit.zdb_id: 1483456-X
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...