GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: The Journal of Clinical Pharmacology, Wiley, Vol. 57, No. S10 ( 2017-10)
    Abstract: The National Institutes of Health Clinical Center (NIH CC) is the largest hospital in the United States devoted entirely to clinical research, with a highly diverse spectrum of patients. Patient safety and clinical quality are major goals of the hospital, and therapy is often complicated by multiple cotherapies and comorbidities. To this end, we implemented a pharmacogenomics program in 2 phases. In the first phase, we implemented genotyping for HLA‐A and HLA‐B gene variations with clinical decision support (CDS) for abacavir, carbamazepine, and allopurinol. In the second phase, we implemented genotyping for drug‐metabolizing enzymes and transporters: SLCO1B1 for CDS of simvastatin and TPMT for CDS of mercaptopurine, azathioprine, and thioguanine. The purpose of this review is to describe the implementation process, which involves clinical, laboratory, informatics, and policy decisions pertinent to the NIH CC.
    Type of Medium: Online Resource
    ISSN: 0091-2700 , 1552-4604
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2017
    detail.hit.zdb_id: 2010253-7
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Genes & Development, Cold Spring Harbor Laboratory, Vol. 26, No. 23 ( 2012-12-01), p. 2604-2620
    Abstract: Monomethylation of histone H3 on Lys 4 (H3K4me1) and acetylation of histone H3 on Lys 27 (H3K27ac) are histone modifications that are highly enriched over the body of actively transcribed genes and on enhancers. Although in yeast all H3K4 methylation patterns, including H3K4me1, are implemented by Set1/COMPASS (complex of proteins associated with Set1), there are three classes of COMPASS-like complexes in Drosophila that could carry out H3K4me1 on enhancers: dSet1, Trithorax, and Trithorax-related (Trr). Here, we report that Trr, the Drosophila homolog of the mammalian Mll3/4 COMPASS-like complexes, can function as a major H3K4 monomethyltransferase on enhancers in vivo. Loss of Trr results in a global decrease of H3K4me1 and H3K27ac levels in various tissues. Assays with the cut wing margin enhancer implied a functional role for Trr in enhancer-mediated processes. A genome-wide analysis demonstrated that Trr is required to maintain the H3K4me1 and H3K27ac chromatin signature that resembles the histone modification patterns described for enhancers. Furthermore, studies in the mammalian system suggested a role for the Trr homolog Mll3 in similar processes. Since Trr and mammalian Mll3/4 complexes are distinguished by bearing a unique subunit, the H3K27 demethylase UTX, we propose a model in which the H3K4 monomethyltransferases Trr/Mll3/Mll4 and the H3K27 demethylase UTX cooperate to regulate the transition from inactive/poised to active enhancers.
    Type of Medium: Online Resource
    ISSN: 0890-9369 , 1549-5477
    RVK:
    Language: English
    Publisher: Cold Spring Harbor Laboratory
    Publication Date: 2012
    detail.hit.zdb_id: 1467414-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Cell, Elsevier BV, Vol. 159, No. 3 ( 2014-10), p. 530-542
    Type of Medium: Online Resource
    ISSN: 0092-8674
    RVK:
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2014
    detail.hit.zdb_id: 187009-9
    detail.hit.zdb_id: 2001951-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 81, No. 13_Supplement ( 2021-07-01), p. 3012-3012
    Abstract: There is an unmet need for preclinical models of rare cancers and rare disease sub-types. The National Cancer Institute's Patient-Derived Models Repository (NCI PDMR; https://pdmr.cancer.gov) is developing quality-controlled, early-passage, clinically-annotated patient-derived tumor xenografts (PDXs), in vitro tumor cell cultures (PDCs), cancer associated fibroblasts (CAFs), and patient-derived organoids (PDOrg) and has focused on addressing unmet needs in the preclinical model space including developing models from adult and pediatric patients with rare cancers. To date, NCI has created and molecularly characterized over 150 preclinical models of rare cancer including indications such as Hurthle cell carcinoma, osteosarcomas, Merkel cell carcinomas, salivary gland cancers, synovial sarcomas, and carcinosarcomas. Rare cancer models developed to date will be reviewed and their histopathologic and molecular characteristics compared to that reported in the clinical setting. A pipeline to identify fusion proteins in these rare cancers such as the Ewing sarcoma EWSR1-FLI1 fusion and NAB2-STAT6 fusions in solitary fibrous tumors (SFT) has been implemented. Four malignant peripheral nerve sheath tumors (MPNST) PDX models are available for researches; these models were developed from patients diagnosed between the ages of 37-68. At the time of model development, two patients were treatment naïve and two had prior radiotherapy. Two of the MPNST PDX models have NF1 oncogenic mutations, three have deep deletions in CDKN2A/B, and three have a mutation in either EED or SUZ12 consistent with the reported molecular characteristics of patients with MPNST. Also of clinical relevance, of two mesothelioma models available, one carries an NF2 driver mutation and the other BAP1 and LATS2 and a PDX model for Hurthle cell carcinoma has wide-spread loss of heterozygosity (LOH 80%). Models for other rare cancers are in development, including four cholangiocarcinoma PDXs with histopathologic confirmation that are currently being expanded for molecular characterization and distribution. Funded by NCI Contract No. HHSN261200800001E Citation Format: Cindy R. Timme, Sergio Y. Alcoser, Devynn Breen, John Carter, Ting-Chia Chang, Alice Chen, Li Chen, Kristen Cooley, Biswajit Das, Emily Delaney, Michelle A. Eugeni, Michelle M. Gottholm-Ahalt, Tara Grinnage-Polley, Jenna Hull, Chris Karlovich, Kimberly Klarmann, Shahanawaz Jiwani, Candace Mallow, Chelsea McGlynn, Justine Mills, Malorie Morris, Michael Mullendore, Dianne Newton, Tia Shearer, Jesse Stottlemyer, Shannon Uzelac, Thomas Walsh, P. Mickey Williams, Yvonne A. Evrard, Melinda G. Hollingshead, James H. Doroshow. Patient-derived models of rare cancers in the National Cancer Institute's patient-derived models repository [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 3012.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of Wildlife Management, Wiley, Vol. 70, No. 5 ( 2006-12), p. 1228-1237
    Type of Medium: Online Resource
    ISSN: 0022-541X , 1937-2817
    Language: English
    Publisher: Wiley
    Publication Date: 2006
    detail.hit.zdb_id: 2066663-9
    SSG: 12
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 16_Supplement ( 2020-08-15), p. 5056-5056
    Abstract: The National Cancer Institute's Patient-Derived Models Repository (NCI PDMR; https://pdmr.cancer.gov) is performing a large-scale multi-year preclinical study with 39 PDX models of rare cancers (mesothelioma, MPNST, osteosarcoma, Merkel cell carcinoma, etc) treated with 56 novel therapeutic combinations in an exploratory, n-of-4 arm, study design. Combinations that show promising responses (e.g., regression or durable inhibition of tumor growth) will be repeated along with the single agent arms to determine if the response is driven by the combination or only one of the agents. In order to do this in a timely fashion, relatively speaking, the PDX tumors are serially passaged and each passage is treated with a set of 8 combinations plus relevant vehicle control(s) while in parallel enough PDXs are retained to be expanded for the next passage and drug set. Every serial passage undergoes several quality control assessments that serve as go/no-go criteria including pathology assessment, human:mouse DNA content assessment, and low pass whole genome sequencing to determine the average fraction of genome changed compared to the original donor material. If there is a QC failure, the PDX model is restarted from early passage cryo-material (passage 1-2). An additional quality control effort is to bookend the combination studies with the first set of agents to see if tumor response is similar across passages. To date, most of the models have demonstrated a high degree of stability, though a couple of models have moved toward murine content and have been restarted from early passage material so all drug combinations can be tested. DNA and RNA are retained from all passages so a full NGS evaluation can be performed at a later date. This effort has been ongoing for over a year and the first bookend studies are beginning to be tested to determine if response at first and last passage of the study are consistent with each other, given the constraints of the inherent heterogeneity of the models themselves. Single agent studies of drug combinations that demonstrated a response in 30%-50% of the models tested are also underway to determine which combinations have a more than additive effect compared to the single agents. Promising combinations will be moved forward to early phase clinical trials for these rare cancers. Funded by NCI Contract No. HHSN261200800001E Citation Format: Yvonne A. Evrard, Biswajit Das, Sergio Y. Alcoser, Suzanne Borgel, Devynn Breen, John Carter, Tiffanie Chase, Alice Chen, Lily Chen, Kristen Cooley, Emily Delaney, Raymond Divelbiss, Lyndsay Dutko, Thomas Forbes, Kyle Georgius, Michelle Gottholm-Ahalt, Tara Grinnage-Pulley, Sierra Hoffman, Chris Karlovich, Shahanawaz Jiwani, Justine Mills, Malorie Morris, Michael Mullendore, Dianne Newton, Rajesh Patidar, Gloryvee Rivera, Howard Stotler, Jesse Stottlemyer, Savanna Styers, Debbie Trail, Shannon Uzelac, Thomas Vilimas, Abigail Walke, Thomas Walsh, Nicole Walters, Peng Wang, P. Mickey Williams, Melinda Hollingshead, James H. Doroshow. Quality control efforts in a large-scale, preclinical trial of rare cancer PDXs by the National Cancer Institute's patient-derived models repository (NCI PDMR) [abstract]. In: Proceedings of the Annual Meeting of the American Association for Cancer Research 2020; 2020 Apr 27-28 and Jun 22-24. Philadelphia (PA): AACR; Cancer Res 2020;80(16 Suppl):Abstract nr 5056.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Journal of Biological Chemistry, Elsevier BV, Vol. 290, No. 12 ( 2015-03), p. 7871-7886
    Type of Medium: Online Resource
    ISSN: 0021-9258
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2015
    detail.hit.zdb_id: 2141744-1
    detail.hit.zdb_id: 1474604-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: JAMA Network Open, American Medical Association (AMA), Vol. 5, No. 11 ( 2022-11-16), p. e2242354-
    Abstract: Cancer screening deficits during the first year of the COVID-19 pandemic were found to persist into 2021. Cancer-related deaths over the next decade are projected to increase if these deficits are not addressed. Objective To assess whether participation in a nationwide quality improvement (QI) collaborative, Return-to-Screening, was associated with restoration of cancer screening. Design, Setting, and Participants Accredited cancer programs electively enrolled in this QI study. Project-specific targets were established on the basis of differences in mean monthly screening test volumes (MTVs) between representative prepandemic (September 2019 and January 2020) and pandemic (September 2020 and January 2021) periods to restore prepandemic volumes and achieve a minimum of 10% increase in MTV. Local QI teams implemented evidence-based screening interventions from June to November 2021 (intervention period), iteratively adjusting interventions according to their MTVs and target. Interrupted time series analyses was used to identify the intervention effect. Data analysis was performed from January to April 2022. Exposures Collaborative QI support included provision of a Return-to-Screening plan-do-study-act protocol, evidence-based screening interventions, QI education, programmatic coordination, and calculation of screening deficits and targets. Main Outcomes and Measures The primary outcome was the proportion of QI projects reaching target MTV and counterfactual differences in the aggregate number of screening tests across time periods. Results Of 859 cancer screening QI projects (452 for breast cancer, 134 for colorectal cancer, 244 for lung cancer, and 29 for cervical cancer) conducted by 786 accredited cancer programs, 676 projects (79%) reached their target MTV. There were no hospital characteristics associated with increased likelihood of reaching target MTV except for disease site (lung vs breast, odds ratio, 2.8; 95% CI, 1.7 to 4.7). During the preintervention period (April to May 2021), there was a decrease in the mean MTV (slope, −13.1 tests per month; 95% CI, −23.1 to −3.2 tests per month). Interventions were associated with a significant immediate (slope, 101.0 tests per month; 95% CI, 49.1 to 153.0 tests per month) and sustained (slope, 36.3 tests per month; 95% CI, 5.3 to 67.3 tests per month) increase in MTVs relative to the preintervention trends. Additional screening tests were performed during the intervention period compared with the prepandemic period (170 748 tests), the pandemic period (210 450 tests), and the preintervention period (722 427 tests). Conclusions and Relevance In this QI study, participation in a national Return-to-Screening collaborative with a multifaceted QI intervention was associated with improvements in cancer screening. Future collaborative QI endeavors leveraging accreditation infrastructure may help address other gaps in cancer care.
    Type of Medium: Online Resource
    ISSN: 2574-3805
    Language: English
    Publisher: American Medical Association (AMA)
    Publication Date: 2022
    detail.hit.zdb_id: 2931249-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 10, No. 1 ( 2020-02-26)
    Abstract: A critical global health need exists for a Zika vaccine capable of mitigating the effects of future Zika epidemics. In this study we evaluated the antibody responses and efficacy of an aluminum hydroxide adjuvanted purified inactivated Zika vaccine (PIZV) against challenge with Zika virus (ZIKV) strain PRVABC59. Indian rhesus macaques received two doses of PIZV at varying concentrations ranging from 0.016 µg − 10 µg and were subsequently challenged with ZIKV six weeks or one year following the second immunization. PIZV induced a dose-dependent immune response that was boosted by a second immunization. Complete protection against ZIKV infection was achieved with the higher PIZV doses of 0.4 µg, 2 µg, and 10 µg at 6 weeks and  with 10 ug PIZV at  1 year following vaccination. Partial protection was achieved with the lower PIZV doses of 0.016 µg and 0.08 µg. Based on these data, a neutralizing antibody response above 3.02 log 10 EC50 was determined as a correlate of protection in macaques. PIZV elicited a dose-dependent neutralizing antibody response which is protective for at least 1 year following vaccination.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 78, No. 13_Supplement ( 2018-07-01), p. 219-219
    Abstract: Background. Mutation detection through genetic testing is playing an increasingly important role in personalized precision medicine in cancer. However, current tests identifying driver mutations as therapeutic targets are based on detection of common mutations in cancer genes. These tests are not patient specific and do not address intra-tumor heterogeneity. Ubiquitous intra-tumor genetic heterogeneity is a mechanism of drug resistance and cancer recurrence. Methods. Approximately 16-24 microsamples are acquired to represent the entire cancer cell population for every ovarian tumor. Each microsample consists of a few cells within a clone and is selected to substitute for a single cell and overcome the large allele dropout rate commonly seen in single genome amplification and sequencing. TEAPOT (Tumor Evolution Assay for Personalized Oncology Therapy) algorithm has been developed to reconstruct a tumor's evolutionary history through integration of whole exome sequencing data from the bulk primary tumor and 16-24 microsamples taken from the bulk tumor. The evolutionary history for an individual tumor is expressed as a rooted and binary tumor developmental tree representing the mitotic process starting from an ancestral cancer cell. Individual mutations are assigned to the cells where they originally occur. The offspring size carrying a mutation was estimated based on tumor purity, variant allele frequency and the variant's copy number. Results. TEAPOT algorithm builds a tumor's evolutionary history with the following features: 1) a tumor's evolutionary history is unique for each ovarian cancer patient; 2) the size of a tree is proportional to the number of microsamples selected; 3) 16-24 microsamples builds a tree with 5 or more generations; 4) TEAPOT detects a driver mutation's occurrence at a specific developmental stage such as 1-cell, 2-cell, 4-cell, etc; 5) The size of offspring carrying a mutation thus the intra-tumor prevalence of the mutation can be estimated; 6) multiple driver mutations can be located separately in different clones. Therefore, TEAPOT provides a quantitative description of intra-tumor genetic heterogeneity and identifies sub-clonal driver mutations in a tumor. Conclusion. TEAPOT reconstructs a tumor's developmental process thus providing a patient-specific evolutionary history. Quantitation of intra-tumor prevalence of driver mutations may inform selection of an effective targeted agent and may provide rationale for cocktail treatment targeting multiple driver mutations simultaneously. TEAPOT can be also used for other solid and liquid cancers. A driver mutation's role in a patient may be functionally defined and quantitated based upon the growth advantage (fitness) it confers on its host cells in the reconstructed tumor evolutionary history. Citation Format: Jianshu Zhang, Helaman Escobar, Harshmi Shah, Mickey Miller, Yang Wei, Kristen Schneider, Michelle Knirr, Kenny Day, Christopher Johnson, Baoli Yang, Eric Devor, Kristina Thiel, Lincoln Nadauld, Kimberly Leslie, Donghai Dai. Development of TEAPOT algorithm to reconstruct individual ovarian tumors' evolutionary history based upon bulk and single cell whole exome sequencing data [abstract] . In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2018;78(13 Suppl):Abstract nr 219.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2018
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...