GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Material
Language
  • 1
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 22, No. 1 ( 2022-01-13), p. 505-533
    Abstract: Abstract. We present here the results obtained during an intensive field campaign conducted in the framework of the French “BIO-MAÏDO” (Bio-physico-chemistry of tropical clouds at Maïdo (Réunion Island): processes and impacts on secondary organic aerosols' formation) project. This study integrates an exhaustive chemical and microphysical characterization of cloud water obtained in March–April 2019 in Réunion (Indian Ocean). Fourteen cloud samples have been collected along the slope of this mountainous island. Comprehensive chemical characterization of these samples is performed, including inorganic ions, metals, oxidants, and organic matter (organic acids, sugars, amino acids, carbonyls, and low-solubility volatile organic compounds, VOCs). Cloud water presents high molecular complexity with elevated water-soluble organic matter content partly modulated by microphysical cloud properties. As expected, our findings show the presence of compounds of marine origin in cloud water samples (e.g. chloride, sodium) demonstrating ocean–cloud exchanges. Indeed, Na+ and Cl− dominate the inorganic composition contributing to 30 % and 27 %, respectively, to the average total ion content. The strong correlations between these species (r2 = 0.87, p value: 〈 0.0001) suggest similar air mass origins. However, the average molar Cl-/Na+ ratio (0.85) is lower than the sea-salt one, reflecting a chloride depletion possibly associated with strong acids such as HNO3 and H2SO4. Additionally, the non-sea-salt fraction of sulfate varies between 38 % and 91 %, indicating the presence of other sources. Also, the presence of amino acids and for the first time in cloud waters of sugars clearly indicates that biological activities contribute to the cloud water chemical composition. A significant variability between events is observed in the dissolved organic content (25.5 ± 18.4 mg C L−1), with levels reaching up to 62 mg C L−1. This variability was not similar for all the measured compounds, suggesting the presence of dissimilar emission sources or production mechanisms. For that, a statistical analysis is performed based on back-trajectory calculations using the CAT (Computing Atmospheric Trajectory Tool) model associated with the land cover registry. These investigations reveal that air mass origins and microphysical variables do not fully explain the variability observed in cloud chemical composition, highlighting the complexity of emission sources, multiphasic transfer, and chemical processing in clouds. Even though a minor contribution of VOCs (oxygenated and low-solubility VOCs) to the total dissolved organic carbon (DOC) (0.62 % and 0.06 %, respectively) has been observed, significant levels of biogenic VOC (20 to 180 nmol L−1) were detected in the aqueous phase, indicating the cloud-terrestrial vegetation exchange. Cloud scavenging of VOCs is assessed by measurements obtained in both the gas and aqueous phases and deduced experimental gas-/aqueous-phase partitioning was compared with Henry's law equilibrium to evaluate potential supersaturation or unsaturation conditions. The evaluation reveals the supersaturation of low-solubility VOCs from both natural and anthropogenic sources. Our results depict even higher supersaturation of terpenoids, evidencing a deviation from thermodynamically expected partitioning in the aqueous-phase chemistry in this highly impacted tropical area.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 21, No. 22 ( 2021-11-25), p. 17185-17223
    Abstract: Abstract. Aerosol particles are a complex component of the atmospheric system which influence climate directly by interacting with solar radiation, and indirectly by contributing to cloud formation. The variety of their sources, as well as the multiple transformations they may undergo during their transport (including wet and dry deposition), result in significant spatial and temporal variability of their properties. Documenting this variability is essential to provide a proper representation of aerosols and cloud condensation nuclei (CCN) in climate models. Using measurements conducted in 2016 or 2017 at 62 ground-based stations around the world, this study provides the most up-to-date picture of the spatial distribution of particle number concentration (Ntot) and number size distribution (PNSD, from 39 sites). A sensitivity study was first performed to assess the impact of data availability on Ntot's annual and seasonal statistics, as well as on the analysis of its diel cycle. Thresholds of 50 % and 60 % were set at the seasonal and annual scale, respectively, for the study of the corresponding statistics, and a slightly higher coverage (75 %) was required to document the diel cycle. Although some observations are common to a majority of sites, the variety of environments characterizing these stations made it possible to highlight contrasting findings, which, among other factors, seem to be significantly related to the level of anthropogenic influence. The concentrations measured at polar sites are the lowest (∼ 102 cm−3) and show a clear seasonality, which is also visible in the shape of the PNSD, while diel cycles are in general less evident, due notably to the absence of a regular day–night cycle in some seasons. In contrast, the concentrations characteristic of urban environments are the highest (∼ 103–104 cm−3) and do not show pronounced seasonal variations, whereas diel cycles tend to be very regular over the year at these stations. The remaining sites, including mountain and non-urban continental and coastal stations, do not exhibit as obvious common behaviour as polar and urban sites and display, on average, intermediate Ntot (∼ 102–103 cm−3). Particle concentrations measured at mountain sites, however, are generally lower compared to nearby lowland sites, and tend to exhibit somewhat more pronounced seasonal variations as a likely result of the strong impact of the atmospheric boundary layer (ABL) influence in connection with the topography of the sites. ABL dynamics also likely contribute to the diel cycle of Ntot observed at these stations. Based on available PNSD measurements, CCN-sized particles (considered here as either 〉50 nm or 〉100 nm) can represent from a few percent to almost all of Ntot, corresponding to seasonal medians on the order of ∼ 10 to 1000 cm−3, with seasonal patterns and a hierarchy of the site types broadly similar to those observed for Ntot. Overall, this work illustrates the importance of in situ measurements, in particular for the study of aerosol physical properties, and thus strongly supports the development of a broad global network of near surface observatories to increase and homogenize the spatial coverage of the measurements, and guarantee as well data availability and quality. The results of this study also provide a valuable, freely available and easy to use support for model comparison and validation, with the ultimate goal of contributing to improvement of the representation of aerosol–cloud interactions in models, and, therefore, of the evaluation of the impact of aerosol particles on climate.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 13, No. 8 ( 2020-08-17), p. 4353-4392
    Abstract: Abstract. Aerosol particles are essential constituents of the Earth's atmosphere, impacting the earth radiation balance directly by scattering and absorbing solar radiation, and indirectly by acting as cloud condensation nuclei. In contrast to most greenhouse gases, aerosol particles have short atmospheric residence times, resulting in a highly heterogeneous distribution in space and time. There is a clear need to document this variability at regional scale through observations involving, in particular, the in situ near-surface segment of the atmospheric observation system. This paper will provide the widest effort so far to document variability of climate-relevant in situ aerosol properties (namely wavelength dependent particle light scattering and absorption coefficients, particle number concentration and particle number size distribution) from all sites connected to the Global Atmosphere Watch network. High-quality data from almost 90 stations worldwide have been collected and controlled for quality and are reported for a reference year in 2017, providing a very extended and robust view of the variability of these variables worldwide. The range of variability observed worldwide for light scattering and absorption coefficients, single-scattering albedo, and particle number concentration are presented together with preliminary information on their long-term trends and comparison with model simulation for the different stations. The scope of the present paper is also to provide the necessary suite of information, including data provision procedures, quality control and analysis, data policy, and usage of the ground-based aerosol measurement network. It delivers to users of the World Data Centre on Aerosol, the required confidence in data products in the form of a fully characterized value chain, including uncertainty estimation and requirements for contributing to the global climate monitoring system.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2505596-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Atmosphere, MDPI AG, Vol. 11, No. 2 ( 2020-01-27), p. 140-
    Abstract: The Oxygenated Compounds in the Tropical Atmosphere: Variability and Exchanges (OCTAVE) campaign aimed to improve the assessment of the budget and role of oxygenated volatile organic compounds (OVOCs) in tropical regions, and especially over oceans, relying on an integrated approach combining in situ measurements, satellite retrievals, and modeling. As part of OCTAVE, volatile organic compounds (VOCs) were measured using a comprehensive suite of instruments on Reunion Island (21.07° S, 55.38° E) from 7 March to 2 May 2018. VOCs were measured at a receptor site at the Maïdo observatory during the entire campaign and at two source sites: Le Port from 19 to 24 April 2018 (source of anthropogenic emissions) and Bélouve from 25 April to 2 May 2018 (source of biogenic emissions) within a mobile lab. The Maïdo observatory is a remote background site located at an altitude of 2200 m, whereas Bélouve is located in a tropical forest to the east of Maïdo and Le Port is an urban area located northwest of Maïdo. The major objective of this study was to understand the sources and distributions of atmospheric formaldehyde (HCHO) in the Maïdo observatory on Reunion Island. To address this objective, two different approaches were used to quantify and determine the main drivers of HCHO at Maïdo. First, a chemical-kinetics-based (CKB) calculation method was used to determine the sources and sinks (biogenic, anthropogenic/primary, or secondary) of HCHO at the Maïdo site. The CKB method shows that 9% of the formaldehyde formed from biogenic emissions and 89% of HCHO had an unknown source; that is, the sources cannot be explicitly described by this method. Next, a positive matrix factorization (PMF) model was applied to characterize the VOC source contributions at Maïdo. The PMF analysis including VOCs measured at the Maïdo observatory shows that the most robust solution was obtained with five factors: secondary biogenic accounting for 17%, primary anthropogenic/solvents (24%), primary biogenic (14%), primary anthropogenic/combustion (22%), and background (23%). The main contributions to formaldehyde sources as described by the PMF model are secondary biogenic (oxidation of biogenic VOCs with 37%) and background (32%). Some assumptions were necessary concerning the high percentage of unknown HCHO sources of the CKB calculation method such as the biogenic emission factor resulting in large discrepancies between the two methods.
    Type of Medium: Online Resource
    ISSN: 2073-4433
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2605928-9
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 12, No. 1 ( 2022-11-27)
    Abstract: Immune response induced by COVID-19 vaccine booster against delta and omicron variants was assessed in 65 adults (65–84 years old) early aftesr a first booster dose. An increase in SARS-CoV-2 neutralizing antibodies was shown in individuals not previously infected without evidence of an age-related effect, with lower increase in those infected before a single dose of primary vaccination. Of note, humoral response was observed only starting from the 5th day after the boost.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Circulation, Ovid Technologies (Wolters Kluwer Health), Vol. 95, No. 1 ( 1997-01-07), p. 83-89
    Abstract: Background Nitric oxide (NO) donors, in addition to their vasodilator effect, decrease platelet aggregation and inhibit vascular smooth muscle cell proliferation. These actions could have beneficial effects on restenosis after coronary balloon angioplasty. Methods and Results In a prospective multicenter, randomized trial, 700 stable coronary patients scheduled for angioplasty received direct NO donors (infusion of linsidomine followed by oral molsidomine) or oral diltiazem. Treatment was started before angioplasty and continued until 12 to 24 hours before follow-up angiography at 6 months. The primary study end point was minimal lumen diameter, assessed by quantitative coronary angiography, 6 months after balloon angioplasty. Clinical variables were well matched in both groups. However, despite intracoronary administration of isosorbide dinitrate, the reference diameter in the NO donor group was significantly greater than in the diltiazem group on the preangioplasty, postangioplasty, and follow-up angiograms. Pretreatment with an NO donor was associated with a modest improvement in the immediate angiographic result compared with pretreatment with diltiazem (minimum luminal diameter, 1.94 versus 1.81 mm; P =.001); this improvement was maintained at the 6-month angiographic follow-up (minimal lumen diameter, 1.54 versus 1.38 mm; P =.007). The extent of late luminal narrowing did not differ significantly between groups (loss index in the NO donor and diltiazam groups, 0.35±0.78 and 0.46±0.74, respectively; P =.103). Restenosis, defined as a binary variable (≥50% stenosis), occurred less often in the NO donor group (38.0% versus 46.5%; P =.026). Combined major clinical events (death, nonfatal myocardial infarction, and coronary revascularization) were similar in the two groups (32.2% versus 32.4%). Conclusions Treatment with linsidomine and molsidomine was associated with a modest improvement in the long-term angiographic result after angioplasty but had no effect on clinical outcome. The improved angiographic result related predominantly to a better immediate procedural result, because late luminal loss did not differ significantly between groups.
    Type of Medium: Online Resource
    ISSN: 0009-7322 , 1524-4539
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 1997
    detail.hit.zdb_id: 1466401-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Circulation, Ovid Technologies (Wolters Kluwer Health), Vol. 96, No. 10 ( 1997-11-18), p. 3396-3402
    Abstract: Background Experimental studies suggest that the antiproliferative effect of heparin after arterial injury is maximized by pretreatment. No previous studies of restenosis have used a pretreatment strategy. We designed this study to determine whether treatment with nadroparin, a low-molecular-weight heparin, started 3 days before the procedure and continued for 3 months, affected angiographic restenosis or clinical outcome after coronary angioplasty. Methods and Results In a prospective multicenter, double-blind, randomized trial, elective coronary angioplasty was performed on 354 patients who were treated with daily subcutaneous nadroparin (0.6 mL of 10 250 anti-Xa IU/mL) or placebo injections started 3 days before angioplasty and continued for 3 months. Angiography was performed just before and immediately after angioplasty and at follow-up. The primary study end point was angiographic restenosis, assessed by quantitative coronary angiography 3 months after balloon angioplasty. Clinical follow-up was continued up to 6 months. Clinical and procedural variables and the occurrence of periprocedural complications did not differ between groups. At angiographic follow-up, the mean minimal lumen diameter and the mean residual stenosis in the nadroparin group (1.37±0.66 mm, 51.9±21.0%) did not differ from the corresponding values in the control group (1.48±0.59 mm, 48.8±18.9%). Combined major cardiac-related clinical events (death, myocardial infarction, target lesion revascularization) did not differ between groups (30.3% versus 29.6%). Conclusions Pretreatment with the low-molecular-weight heparin nadroparin continued for 3 months after balloon angioplasty had no beneficial effect on angiographic restenosis or on adverse clinical outcomes.
    Type of Medium: Online Resource
    ISSN: 0009-7322 , 1524-4539
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 1997
    detail.hit.zdb_id: 1466401-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: ACS Earth and Space Chemistry, American Chemical Society (ACS), Vol. 6, No. 10 ( 2022-10-20), p. 2412-2431
    Type of Medium: Online Resource
    ISSN: 2472-3452 , 2472-3452
    Language: English
    Publisher: American Chemical Society (ACS)
    Publication Date: 2022
    detail.hit.zdb_id: 2883780-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Atmosphere, MDPI AG, Vol. 13, No. 2 ( 2022-01-31), p. 250-
    Abstract: This paper quantifies the tropical stratospheric aerosol content as impacted by volcanic events over the 2013–2019 period. We use global model simulations by the Whole Atmosphere Community Climate Model (WACCM) which is part of the Community Earth System Model version 1.0 (CESM1). WACCM is associated with the Community Aerosol and Radiation Model for Atmospheres (CARMA) sectional aerosol microphysics model which includes full sulphur chemical and microphysical cycles with no a priori assumption on particle size. Five main volcanic events (Kelud, Calbuco, Ambae, Raikoke and Ulawun) have been reported and are shown to have significantly influenced the stratospheric aerosol layer in the tropics, either through direct injection in this region or through transport from extra-tropical latitudes. Space-borne data as well as ground-based lidar and balloon-borne in situ observations are used to evaluate the model calculations in terms of aerosol content, vertical distribution, optical and microphysical properties, transport and residence time of the various volcanic plumes. Overall, zonal mean model results reproduce the occurrence and vertical extents of the plumes derived from satellite observations but shows some discrepancies for absolute values of extinction and of stratospheric aerosol optical depth (SAOD). Features of meridional transport of the plumes emitted from extra-tropical latitudes are captured by the model but simulated absolute values of SAOD differ from 6 to 200% among the various eruptions. Simulations tend to agree well with observed in situ vertical profiles for the Kelud and Calbuco plumes but this is likely to depend on the period for which comparison is done. Some explanations for the model–measurement discrepancies are discussed such as the inaccurate knowledge of the injection parameters and the presence of ash not accounted in the simulations.
    Type of Medium: Online Resource
    ISSN: 2073-4433
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2605928-9
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: EPJ Web of Conferences, EDP Sciences, Vol. 176 ( 2018), p. 05015-
    Abstract: The 2-year lidar water vapor database (November 2013 - October 2015) of the Maïdo Observatory (Reunion Island / 21°S,55.5°E) is now processed. The performances of the lidar in providing accurate vertical structures are shown to be good. The ability to measure quantities of a few ppmv in the lower stratosphere is demonstrated (based on Cryogenic Frost point Hygrometer sonde/lidar profiles comparisons) for a 48-hour integration time period, up to 22 km (with a vertical resolution of 1.3 km).
    Type of Medium: Online Resource
    ISSN: 2100-014X
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2018
    detail.hit.zdb_id: 2595425-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...