GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Material
Language
  • 1
    Online Resource
    Online Resource
    Elsevier BV ; 2008
    In:  Dynamics of Atmospheres and Oceans Vol. 45, No. 3-4 ( 2008-08), p. 102-134
    In: Dynamics of Atmospheres and Oceans, Elsevier BV, Vol. 45, No. 3-4 ( 2008-08), p. 102-134
    Type of Medium: Online Resource
    ISSN: 0377-0265
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2008
    detail.hit.zdb_id: 2001552-5
    detail.hit.zdb_id: 199173-5
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2007
    In:  Journal of Geophysical Research Vol. 112, No. C5 ( 2007-05-30)
    In: Journal of Geophysical Research, American Geophysical Union (AGU), Vol. 112, No. C5 ( 2007-05-30)
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2007
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1990
    In:  Journal of Geophysical Research: Oceans Vol. 95, No. C7 ( 1990-07-15), p. 11375-11409
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 95, No. C7 ( 1990-07-15), p. 11375-11409
    Abstract: To initialize the barotropic and baroclinic modes, numerical ocean prediction models need information both above and below the main thermocline. Forecasts of upper ocean mesoscale variability using real and simulated data show high sensitivity to the Subthermocline pressure (STP) field. Results using simulated data indicate that the accuracy of this field may be the limiting factor on the time scale for mesoscale oceanic predictive skill. Satellite altimetry provides a potentially abundant source of sea surface height (SSH) data, but there is no comparable source of Subthermocline information on the horizon. We investigate statistical techniques to infer Subthermocline pressure anomalies from SSH data, a problem complicated by the weak correlation between the fields. This problem is addressed by using the degrees of freedom available in the data and by describing them in an efficient manner to suppress noise, eliminate unskilled or redundant estimators and to prevent ill‐conditioned matrix inversions. Multilinear regression, empirical orthogonal function (EOF) regression and principal estimator patterns are compared using data simulated by a numerical ocean model and error models. Numerous questions that need to be addressed for proper application of the statistical techniques are investigated. Topics include noise suppression and the impact of the noise on accuracy. These topics are studied as a function of decorrelation distance in the noise and the presence or absence of noise in dependent and independent data sets. In this context we also investigate dependent data set size requirements, the criteria for choosing estimators, the number, areal coverage, and spacing of sampling locations used in the estimators, the effect of the ocean dynamical regime on the results, the effects of ocean model imperfections or changes in population statistics on the results, SSH versus ΔSSH in an orbital repeat period as estimators, and the effect of orbital repeat period on Subthermocline estimates from ΔSSH data. In the presence of 40% rms noise the usual significance tests are much too conservative for this application. (However, we also found that EOFs calculated from spatially correlated, temporally uncorrelated noise can pass a popular EOF significance test based on uncorrelated noise.) Although more difficult to suppress than uncorrelated noise, correlated noise did not markedly increase the error in these tests. Spatial coverage of the estimators was found to be an important parameter, and four to five ascending‐or descending tracks per wavelength were sufficient for uniformly accurate estimates whether beneath or between altimeter tracks. In most of these tests, ΔSSH proved a better estimator than SSH, but for ΔSSH resolving the shortest major time scale is a necessity. High accuracy is not required for Subthermocline pressure anomalies to substantially enhance upper ocean forecast skill in a numerical ocean prediction model. In results to be reported elsewhere, a statistically inferred STP field substantially enhanced the skill of a Gulf Stream forecast model where the SSH was initialized from oceanic observations. The inferred STP field allowed the model to show forecast skill in comparison to persistence of the initial state.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1990
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Meteorological Society ; 2012
    In:  Journal of Physical Oceanography Vol. 42, No. 7 ( 2012-07-01), p. 1099-1123
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 42, No. 7 ( 2012-07-01), p. 1099-1123
    Abstract: The seasonal variation of Indonesian Throughflow (ITF) transport is investigated using ocean general circulation model experiments with the Hybrid Coordinate Ocean Model (HYCOM). Twenty-eight years (1981–2008) of ⅓° Indo-Pacific basin HYCOM simulations and three years (2004–06) from a global HYCOM simulation are analyzed. Both models are able to simulate the seasonal variation of upper-ocean currents and the total transport through Makassar Strait measured by International Nusantara Stratification and Transport (INSTANT) moorings reasonably well. The annual cycle of upper-ocean currents is then calculated from the Indo-Pacific HYCOM simulation. The reduction of southward currents at Makassar Strait during April–May and October–November is evident, consistent with the INSTANT observations. Analysis of the upper-ocean currents suggests that the reduction in ITF transport during April–May and October–November results from the wind variation in the tropical Indian Ocean through the generation of a Wyrtki jet and the propagation of coastal Kelvin waves, while the subsequent recovery during January–March originates from upper-ocean variability associated with annual Rossby waves in the Pacific that are enhanced by western Pacific winds. These processes are also found in the global HYCOM simulation during the period of the INSTANT observations. The model experiments forced with annual-mean climatological wind stress in the Pacific and 3-day mean wind stress in the Indian Ocean show the reduction of southward currents at Makassar Strait during October–November but no subsequent recovery during January–March, confirming the relative importance of wind variations in the Pacific and Indian Oceans for the ITF transport in each season.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2012
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Meteorological Society ; 2010
    In:  Journal of Physical Oceanography Vol. 40, No. 1 ( 2010-01-01), p. 103-120
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 40, No. 1 ( 2010-01-01), p. 103-120
    Abstract: The annual mean heat budget of the upper ocean beneath the stratocumulus/stratus cloud deck in the southeast Pacific is estimated using Simple Ocean Data Assimilation (SODA) and an eddy-resolving Hybrid Coordinate Ocean Model (HYCOM). Both are compared with estimates based on Woods Hole Oceanographic Institution (WHOI) Improved Meteorological (IMET) buoy observations at 20°S, 85°W. Net surface heat fluxes are positive (warming) over most of the area under the stratus cloud deck. Upper-ocean processes responsible for balancing the surface heat flux are examined by estimating each term in the heat equation. In contrast to surface heat fluxes, geostrophic transport in the upper 50 m causes net cooling in most of the stratus cloud deck region. Ekman transport provides net warming north of the IMET site and net cooling south of the IMET site. Although the eddy heat flux divergence term can be comparable to other terms at a particular location, such as the IMET mooring site, it is negligible for the entire stratus region when area averaged because it is not spatially coherent in the open ocean. Although cold-core eddies are often generated near the coast in the eddy-resolving model, they do not significantly impact the heat budget in the open ocean in the southeast Pacific.
    Type of Medium: Online Resource
    ISSN: 1520-0485 , 0022-3670
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2010
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1996
    In:  Journal of Geophysical Research: Oceans Vol. 101, No. C1 ( 1996-01-15), p. 941-976
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 101, No. C1 ( 1996-01-15), p. 941-976
    Abstract: A set of numerical simulations is used to investigate the Pacific Ocean circulation north of 20°S, with emphasis on the Kuroshio/Oyashio current system. The primitive equation models used for these simulations have a free surface and realistic geometry that includes the deep marginal seas, such as the Sea of Japan. Most of the simulations have 1/8° resolution for each variable but range from 1/2°, 1.5‐layer reduced gravity to 1/16°, six layer with realistic bottom topography. These are used to investigate the dynamics of the Kuroshio/Oyashio current system and to identify the processes that contribute most to the realism of the simulations. This is done by model‐data comparisons, by using the modularity of layered ocean models to include/exclude certain dynamical processes, by varying the model geometry and bottom topography, and by varying model parameters, such as horizontal grid resolution, layer structure, and eddy viscosity. In comparison with observational data, the simulations show that the barotropic mode, at least one internal mode, nonlinearity, high “horizontal” resolution (1/8° or finer), the regional bottom topography, and the wind forcing are critical for realistic simulations. The first four are important for baroclinic instability (eddy‐mean energetics actually show mixed barotropic‐baroclinic instability), the wind curl pattern for the formation and basic placement of the current system, and the bottom topography for the distribution of the instability and for influences on the pathways of the mean flow. Both the Hellerman and Rosenstein (1983) (HR) monthly wind stress climatology and 1000‐mbar winds from the European Centre for Medium‐Range Weather Forecasts (ECMWF) have been used to drive the model. East of about 150°E, they give a mean latitude for the Kuroshio Extension that differs by about 3°, approximately 34°N for HR, 37°N for ECMWF, and 35°N observed. The subarctic front is the northern boundary of the subtropical gyre. It is associated with the annual and April–September mean zero wind stress curl lines (which are similar), while the Kuroshio Extension is associated with wintertime zero wind stress curl. This means that part of the flow from the Kuroshio must pass north of the Kuroshio Extension and connect with the Oyashio and subarctic front. Realistic routes for this connection are flow through the Sea of Japan, a nonlinear route separated from the east coast of Japan, and bifurcation of the Kuroshio at the Shatsky Rise. In addition, the six‐layer simulations show a 3‐Sv meridional overturning cell with southward surface flow and northward return flow centered near 400 m depth. Baroclinic instability plays a critical role in coupling the shallow and abyssal layer circulations and in allowing the bottom topography to strongly influence the shallow circulation. By this means, the Izu Ridge and Trench and seamounts upstream and downstream of these have profound influence on (1) the mean path of the Kuroshio and its mean meanders south and east of Japan and (2) on separating the northward flow connecting the Kuroshio and the Oyashio/subarctic front from the east coast of Japan. Without the topographic influence, the models show an unrealistic northward current along the east coast of Japan. In essence, the topography regulates the location and strength of the baroclinic instability. The baroclinic instability gives eddy‐driven deep mean flows that follow the f/h contours (where f is the Coriolis parameter and h is the depth of the water column) of the bottom topography. These abyssal currents then strongly influence the pathway for subtropical gyre flow north of the Kuroshio Extension and steer the mean meanders in the Kuroshio south and east of Japan. This is corroborated by current meter data from the Kuroshio Extension Regional Experiment (World Ocean Circulation Experiment line PCM 7). The meander path south of Japan depends on the occurrence of baroclinic instability west of the Izu Ridge; otherwise, a straight path occurs. The pathway shows little sensitivity to the Tokara Strait transport over the range simulated (36–72 Sv in yearly means). However, interannual increases in wind forcing or Tokara Strait transport give rise to a predominant meander path, while decreases yield a predominant straight path. Resolution of 1/8° in an ocean model is comparable to the 2.5° resolution used in atmospheric forecast models in the early 1980s based on the first internal mode Rossby radius of deformation. Model comparisons at 1/8° and 1/16° resolution and comparisons with current meter data and Geosat altimeter data show that 1/16° resolution is needed for adequate eastward penetration of the high eddy kinetic energy associated with the Kuroshio Extension.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1996
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2002
    In:  Geophysical Research Letters Vol. 29, No. 23 ( 2002-12), p. 56-1-56-4
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 29, No. 23 ( 2002-12), p. 56-1-56-4
    Type of Medium: Online Resource
    ISSN: 0094-8276
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2002
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Ocean Modelling, Elsevier BV, Vol. 96 ( 2015-12), p. 203-213
    Type of Medium: Online Resource
    ISSN: 1463-5003
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2015
    detail.hit.zdb_id: 1126496-2
    detail.hit.zdb_id: 1498544-5
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Meteorological Society ; 2001
    In:  Journal of Physical Oceanography Vol. 31, No. 7 ( 2001-07), p. 1712-1732
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 31, No. 7 ( 2001-07), p. 1712-1732
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2001
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Meteorological Society ; 2013
    In:  Journal of Physical Oceanography Vol. 43, No. 10 ( 2013-10-01), p. 2245-2245
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 43, No. 10 ( 2013-10-01), p. 2245-2245
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2013
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...