GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 12, No. 1 ( 2022-11-18)
    Abstract: SARS-CoV-2 variants accumulating immune escape mutations provide a significant risk to vaccine-induced protection against infection. The novel variant of concern (VoC) Omicron BA.1 and its sub-lineages have the largest number of amino acid alterations in its Spike protein to date. Thus, they may efficiently escape recognition by neutralizing antibodies, allowing breakthrough infections in convalescent and vaccinated individuals in particular in those who have only received a primary immunization scheme. We analyzed neutralization activity of sera from individuals after vaccination with all mRNA-, vector- or heterologous immunization schemes currently available in Europe by in vitro neutralization assay at peak response towards SARS-CoV-2 B.1, Omicron sub-lineages BA.1, BA.2, BA.2.12.1, BA.3, BA.4/5, Beta and Delta pseudotypes and also provide longitudinal follow-up data from BNT162b2 vaccinees. All vaccines apart from Ad26.CoV2.S showed high levels of responder rates (96–100%) towards the SARS-CoV-2 B.1 isolate, and minor to moderate reductions in neutralizing Beta and Delta VoC pseudotypes. The novel Omicron variant and its sub-lineages had the biggest impact, both in terms of response rates and neutralization titers. Only mRNA-1273 showed a 100% response rate to Omicron BA.1 and induced the highest level of neutralizing antibody titers, followed by heterologous prime-boost approaches. Homologous BNT162b2 vaccination, vector-based AZD1222 and Ad26.CoV2.S performed less well with peak responder rates of 48%, 56% and 9%, respectively. However, Omicron responder rates in BNT162b2 recipients were maintained in our six month longitudinal follow-up indicating that individuals with cross-protection against Omicron maintain it over time. Overall, our data strongly argue for booster doses in individuals who were previously vaccinated with BNT162b2, or a vector-based primary immunization scheme.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 185, No. 6 ( 2010-09-15), p. 3708-3717
    Abstract: Lipoteichoic acid (LTA), a ubiquitous cell wall component of Gram-positive bacteria, represents a potent immunostimulatory molecule. Because LTA of a mutant Staphylococcus aureus strain lacking lipoproteins (Δlgt-LTA) has been described to be immunobiologically inactive despite a lack of ascertained structural differences to wild-type LTA (wt-LTA), we investigated the functional requirements for the recognition of Δlgt-LTA by human peripheral blood cells. In this study, we demonstrate that Δlgt-LTA–induced immune activation critically depends on the immobilization of LTA and the presence of human serum components, which, to a lesser degree, was also observed for wt-LTA. Under experimental conditions allowing LTA-mediated stimulation, we found no differences between the immunostimulatory capacity of Δlgt-LTA and wt-LTA in human blood cells, arguing for a limited contribution of possible lipoprotein contaminants to wt-LTA–mediated immune activation. In contrast to human blood cells, TLR2-transfected human embryonic kidney 293 cells could be activated only by wt-LTA, whereas activation of these cells by Δlgt-LTA required the additional expression of TLR6 and CD14, suggesting that activation of human embryonic kidney 293 cells expressing solely TLR2 is probably mediated by residual lipoproteins in wt-LTA. Notably, in human peripheral blood, LTA-specific IgG Abs are essential for Δlgt-LTA–mediated immune activation and appear to induce the phagocytic uptake of Δlgt-LTA via engagement of FcγRII. In this study, we have elucidated a novel mechanism of LTA-induced cytokine induction in human peripheral blood cells that involves uptake of LTA and subsequent intracellular recognition driven by TLR2, TLR6, and CD14.
    Type of Medium: Online Resource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Language: English
    Publisher: The American Association of Immunologists
    Publication Date: 2010
    detail.hit.zdb_id: 1475085-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Molecular Cancer, Springer Science and Business Media LLC, Vol. 9, No. 1 ( 2010-12)
    Abstract: RhoH is a constitutively active member of the family of Rho GTPases. Its expression is restricted to the haematopoietic lineage, where it serves as a positive regulator for T cell selection and mast cell function and as a negative regulator for growth-related functions in other lineages. Here, we examined the activation of signal transducer and activator of transcription (STAT) proteins in response to stimulation with interleukin 3 (IL3). Results Using the murine IL3-dependent cell line BaF3 we investigated the influence of RhoH protein expression levels on IL3-mediated cellular responses. RhoH overexpressing cells showed lower sensitivity to IL3 and decreased STAT5 activation. SiRNA-mediated repression of RhoH gene expression led to an increase in proliferation and STAT5 activity which correlated with an increased number of IL3 receptor α chain molecules, also known as CD123, expressed at the cell surface. Interestingly, these findings could be reproduced using human THP-1 cells as a model system for acute myeloid leukaemia, where low RhoH levels are known to be an unfavourable prognostic marker. Overexpression of RhoH on the other hand caused an induction of STAT1 activity and western blot analysis revealed that activated STAT1 is phosphorylated on Tyr701. STAT1 is known to induce apoptosis or cell cycle arrest and we detected an upregulation of cyclin-dependent kinase inhibitors (CDKI) p21 Cip1 and p27 Kip1 in RhoH overexpressing BaF3 cells. Conclusions We propose that RhoH functions as a negative regulator for IL3-induced signals through modulation of the JAK-STAT pathway. High levels of RhoH allow the IL3-dependent activation of STAT1 causing decreased proliferation through upregulation of p21 Cip1 and p27 Kip1 . Low RhoH levels on the other hand led to an upregulation of IL3-dependent cell growth, STAT5 activity and an increase of CD123 surface expression, linking RhoH to a CD123/STAT5 phenotype that has been described in AML patients.
    Type of Medium: Online Resource
    ISSN: 1476-4598
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2010
    detail.hit.zdb_id: 2091373-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...