GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Atmospheric Pollution Research, Elsevier BV, Vol. 6, No. 3 ( 2015-05), p. 503-510
    Type of Medium: Online Resource
    ISSN: 1309-1042
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2015
    detail.hit.zdb_id: 2645757-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 11, No. 1 ( 2018-01-29), p. 551-567
    Abstract: Abstract. The Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING) is a compact remote sensing instrument dedicated to mapping trace gases from an unmanned aerial vehicle (UAV). SWING is based on a compact visible spectrometer and a scanning mirror to collect scattered sunlight. Its weight, size, and power consumption are respectively 920 g, 27 cm × 12 cm × 8 cm, and 6 W. SWING was developed in parallel with a 2.5 m flying-wing UAV. This unmanned aircraft is electrically powered, has a typical airspeed of 100 km h−1, and can operate at a maximum altitude of 3 km. We present SWING-UAV experiments performed in Romania on 11 September 2014 during the Airborne ROmanian Measurements of Aerosols and Trace gases (AROMAT) campaign, which was dedicated to test newly developed instruments in the context of air quality satellite validation. The UAV was operated up to 700 m above ground, in the vicinity of the large power plant of Turceni (44.67∘ N, 23.41∘ E; 116 ma.s.l.). These SWING-UAV flights were coincident with another airborne experiment using the Airborne imaging differential optical absorption spectroscopy (DOAS) instrument for Measurements of Atmospheric Pollution (AirMAP), and with ground-based DOAS, lidar, and balloon-borne in situ observations. The spectra recorded during the SWING-UAV flights are analysed with the DOAS technique. This analysis reveals NO2 differential slant column densities (DSCDs) up to 13±0.6×1016 molec cm−2. These NO2 DSCDs are converted to vertical column densities (VCDs) by estimating air mass factors. The resulting NO2 VCDs are up to 4.7±0.4×1016 molec cm−2. The water vapour DSCD measurements, up to 8±0.15×1022 molec cm−2, are used to estimate a volume mixing ratio of water vapour in the boundary layer of 0.013±0.002 mol mol−1. These geophysical quantities are validated with the coincident measurements.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2018
    detail.hit.zdb_id: 2505596-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 16, No. 5 ( 2023-03-14), p. 1357-1389
    Abstract: Abstract. Airborne imaging differential optical absorption spectroscopy (DOAS), ground-based stationary DOAS, and car DOAS measurements were conducted during the S5P-VAL-DE-Ruhr campaign in September 2020. The campaign area is located in the Rhine-Ruhr region of North Rhine-Westphalia, western Germany, which is a pollution hotspot in Europe comprising urban and large industrial sources. The DOAS measurements are used to validate spaceborne NO2 tropospheric vertical column density (VCD) data products from the Sentinel-5 Precursor (S5P) TROPOspheric Monitoring Instrument (TROPOMI). Seven flights were performed with the airborne imaging DOAS instrument for measurements of atmospheric pollution (AirMAP), providing measurements that were used to create continuous maps of NO2 in the layer below the aircraft. These flights cover many S5P ground pixels within an area of 30 km × 35 km and were accompanied by ground-based stationary measurements and three mobile car DOAS instruments. Stationary measurements were conducted by two Pandora, two Zenith-DOAS, and two MAX-DOAS instruments. Ground-based stationary and car DOAS measurements are used to evaluate the AirMAP tropospheric NO2 VCDs and show high Pearson correlation coefficients of 0.88 and 0.89 and slopes of 0.90 ± 0.09 and 0.89 ± 0.02 for the stationary and car DOAS, respectively. Having a spatial resolution of about 100 m × 30 m, the AirMAP tropospheric NO2 VCD data create a link between the ground-based and the TROPOMI measurements with a nadir resolution of 3.5 km × 5.5 km and are therefore well suited to validate the TROPOMI tropospheric NO2 VCD. The observations on the 7 flight days show strong NO2 variability, which is dependent on the three target areas, the day of the week, and the meteorological conditions. The AirMAP campaign data set is compared to the TROPOMI NO2 operational offline (OFFL) V01.03.02 data product, the reprocessed NO2 data using the V02.03.01 of the official level-2 processor provided by the Product Algorithm Laboratory (PAL), and several scientific TROPOMI NO2 data products. The AirMAP and TROPOMI OFFL V01.03.02 data are highly correlated (r=0.87) but show an underestimation of the TROPOMI data with a slope of 0.38 ± 0.02 and a median relative difference of −9 %. With the modifications in the NO2 retrieval implemented in the PAL V02.03.01 product, the slope and median relative difference increased to 0.83 ± 0.06 and +20 %. However, the modifications resulted in larger scatter and the correlation decreased significantly to r=0.72. The results can be improved by not applying a cloud correction for the TROPOMI data in conditions with high aerosol load and when cloud pressures are retrieved close to the surface. The influence of spatially more highly resolved a priori NO2 vertical profiles and surface reflectivity are investigated using scientific TROPOMI tropospheric NO2 VCD data products. The comparison of the AirMAP campaign data set to the scientific data products shows that the choice of surface reflectivity database has a minor impact on the tropospheric NO2 VCD retrieval in the campaign region and season. In comparison, the replacement of the a priori NO2 profile in combination with the improvements in the retrieval of the PAL V02.03.01 product regarding cloud heights can further increase the tropospheric NO2 VCDs. This study demonstrates that the underestimation of the TROPOMI tropospheric NO2 VCD product with respect to the validation data set has been and can be further significantly improved.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2023
    detail.hit.zdb_id: 2505596-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 10, No. 5 ( 2017-05-04), p. 1665-1688
    Abstract: Abstract. We present retrieval results of tropospheric nitrogen dioxide (NO2) vertical column densities (VCDs), mapped at high spatial resolution over three Belgian cities, based on the DOAS analysis of Airborne Prism EXperiment (APEX) observations. APEX, developed by a Swiss-Belgian consortium on behalf of ESA (European Space Agency), is a pushbroom hyperspectral imager characterised by a high spatial resolution and high spectral performance. APEX data have been acquired under clear-sky conditions over the two largest and most heavily polluted Belgian cities, i.e. Antwerp and Brussels on 15 April and 30 June 2015. Additionally, a number of background sites have been covered for the reference spectra. The APEX instrument was mounted in a Dornier DO-228 aeroplane, operated by Deutsches Zentrum für Luft- und Raumfahrt (DLR). NO2 VCDs were retrieved from spatially aggregated radiance spectra allowing urban plumes to be resolved at the resolution of 60  ×  80 m2. The main sources in the Antwerp area appear to be related to the (petro)chemical industry while traffic-related emissions dominate in Brussels. The NO2 levels observed in Antwerp range between 3 and 35  ×  1015 molec cm−2, with a mean VCD of 17.4 ± 3.7  ×  1015 molec cm−2. In the Brussels area, smaller levels are found, ranging between 1 and 20  ×  1015 molec cm−2 and a mean VCD of 7.7 ± 2.1  ×  1015 molec cm−2. The overall errors on the retrieved NO2 VCDs are on average 21 and 28 % for the Antwerp and Brussels data sets. Low VCD retrievals are mainly limited by noise (1σ slant error), while high retrievals are mainly limited by systematic errors. Compared to coincident car mobile-DOAS measurements taken in Antwerp and Brussels, both data sets are in good agreement with correlation coefficients around 0.85 and slopes close to unity. APEX retrievals tend to be, on average, 12 and 6 % higher for Antwerp and Brussels, respectively. Results demonstrate that the NO2 distribution in an urban environment, and its fine-scale variability, can be mapped accurately with high spatial resolution and in a relatively short time frame, and the contributing emission sources can be resolved. High-resolution quantitative information about the atmospheric NO2 horizontal variability is currently rare, but can be very valuable for (air quality) studies at the urban scale.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2017
    detail.hit.zdb_id: 2505596-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 12, No. 1 ( 2019-01-11), p. 211-236
    Abstract: Abstract. We present an intercomparison study of four airborne imaging DOAS instruments, dedicated to the retrieval and high-resolution mapping of tropospheric nitrogen dioxide (NO2) vertical column densities (VCDs). The AROMAPEX campaign took place in Berlin, Germany, in April 2016 with the primary objective to test and intercompare the performance of experimental airborne imagers. The imaging DOAS instruments were operated simultaneously from two manned aircraft, performing synchronised flights: APEX (VITO–BIRA-IASB) was operated from DLR's DO-228 D-CFFU aircraft at 6.2 km in altitude, while AirMAP (IUP-Bremen), SWING (BIRA-IASB), and SBI (TNO–TU Delft–KNMI) were operated from the FUB Cessna 207T D-EAFU at 3.1 km. Two synchronised flights took place on 21 April 2016. NO2 slant columns were retrieved by applying differential optical absorption spectroscopy (DOAS) in the visible wavelength region and converted to VCDs by the computation of appropriate air mass factors (AMFs). Finally, the NO2 VCDs were georeferenced and mapped at high spatial resolution. For the sake of harmonising the different data sets, efforts were made to agree on a common set of parameter settings, AMF look-up table, and gridding algorithm. The NO2 horizontal distribution, observed by the different DOAS imagers, shows very similar spatial patterns. The NO2 field is dominated by two large plumes related to industrial compounds, crossing the city from west to east. The major highways A100 and A113 are also identified as line sources of NO2. Retrieved NO2 VCDs range between 1×1015 molec cm−2 upwind of the city and 20×1015 molec cm−2 in the dominant plume, with a mean of 7.3±1.8×1015 molec cm−2 for the morning flight and between 1 and 23×1015 molec cm−2 with a mean of 6.0±1.4×1015 molec cm−2 for the afternoon flight. The mean NO2 VCD retrieval errors are in the range of 22 % to 36 % for all sensors. The four data sets are in good agreement with Pearson correlation coefficients better than 0.9, while the linear regression analyses show slopes close to unity and generally small intercepts.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2019
    detail.hit.zdb_id: 2505596-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    MDPI AG ; 2021
    In:  International Journal of Environmental Research and Public Health Vol. 18, No. 2 ( 2021-01-11), p. 544-
    In: International Journal of Environmental Research and Public Health, MDPI AG, Vol. 18, No. 2 ( 2021-01-11), p. 544-
    Abstract: This study investigates changes in pollution associated with the lockdown period caused by the COVID-19 pandemic in Galati (45.43° N, 28.03° E), a Romanian city located in the southeast of Romania. The study is focused on nitrogen dioxide (NO2), a trace gas which can be related to emissions from industrial activities, heating, and transportation. The investigation is based on in situ observations from local Air Quality Monitoring Stations (AQMS) and mobile remote sensing observations by Differential Optical Absorption Spectroscopy (DOAS) technique. We also show results of the NO2 vertical column measured by TROPOMI (TROPOspheric Monitoring Instrument), a space instrument onboard of satellite mission Sentinel-5P, to complement local ground-based measurements. For in situ observations, the lockdown interval (23 March 2020–15 May 2020) was separated from normal periods. The decrease in local NO2 concentration during lockdown, measured in situ, is rather small, of about 10–40% at the most, is observed only at some stations, and is better seen during workdays than during weekends. We conclude that the decrease in NO2 content over Galati city during lockdown is relatively small and may be attributed to the reduction in local traffic, a consequence of special measures and restrictions imposed during the COVID-19 lockdown by the Romanian authorities.
    Type of Medium: Online Resource
    ISSN: 1660-4601
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2175195-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Sensors, MDPI AG, Vol. 13, No. 3 ( 2013-03-20), p. 3922-3940
    Type of Medium: Online Resource
    ISSN: 1424-8220
    Language: English
    Publisher: MDPI AG
    Publication Date: 2013
    detail.hit.zdb_id: 2052857-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 13, No. 10 ( 2020-10-15), p. 5513-5535
    Abstract: Abstract. The Airborne ROmanian Measurements of Aerosols and Trace gases (AROMAT) campaigns took place in Romania in September 2014 and August 2015. They focused on two sites: the Bucharest urban area and large power plants in the Jiu Valley. The main objectives of the campaigns were to test recently developed airborne observation systems dedicated to air quality studies and to verify their applicability for the validation of space-borne atmospheric missions such as the TROPOspheric Monitoring Instrument (TROPOMI)/Sentinel-5 Precursor (S5P). We present the AROMAT campaigns from the perspective of findings related to the validation of tropospheric NO2, SO2, and H2CO. We also quantify the emissions of NOx and SO2 at both measurement sites. We show that tropospheric NO2 vertical column density (VCD) measurements using airborne mapping instruments are well suited for satellite validation in principle. The signal-to-noise ratio of the airborne NO2 measurements is an order of magnitude higher than its space-borne counterpart when the airborne measurements are averaged at the TROPOMI pixel scale. However, we show that the temporal variation of the NO2 VCDs during a flight might be a significant source of comparison error. Considering the random error of the TROPOMI tropospheric NO2 VCD (σ), the dynamic range of the NO2 VCDs field extends from detection limit up to 37 σ (2.6×1016 molec. cm−2) and 29 σ (2×1016 molec. cm−2) for Bucharest and the Jiu Valley, respectively. For both areas, we simulate validation exercises applied to the TROPOMI tropospheric NO2 product. These simulations indicate that a comparison error budget closely matching the TROPOMI optimal target accuracy of 25 % can be obtained by adding NO2 and aerosol profile information to the airborne mapping observations, which constrains the investigated accuracy to within 28 %. In addition to NO2, our study also addresses the measurements of SO2 emissions from power plants in the Jiu Valley and an urban hotspot of H2CO in the centre of Bucharest. For these two species, we conclude that the best validation strategy would consist of deploying ground-based measurement systems at well-identified locations.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2505596-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 14, No. 1 ( 2021-01-28), p. 615-646
    Abstract: Abstract. Sentinel-5 Precursor (S-5P), launched in October 2017, carrying the TROPOspheric Monitoring Instrument (TROPOMI) nadir-viewing spectrometer, is the first mission of the Copernicus Programme dedicated to the monitoring of air quality, climate, and ozone. In the presented study, the TROPOMI tropospheric nitrogen dioxide (NO2) level-2 (L2) product (OFFL v1.03.01; 3.5 km × 7 km at nadir observations) has been validated over strongly polluted urban regions by comparison with coincident high-resolution Airborne Prism EXperiment (APEX) remote sensing observations (∼ 75 m × 120 m). Satellite products can be optimally assessed based on (APEX) airborne remote sensing observations, as a large amount of satellite pixels can be fully mapped at high accuracy and in a relatively short time interval, reducing the impact of spatiotemporal mismatches. In the framework of the S-5P validation campaign over Belgium (S5PVAL-BE), the APEX imaging spectrometer has been deployed during four mapping flights (26–29 June 2019) over the two largest urban regions in Belgium, i.e. Brussels and Antwerp, in order to map the horizontal distribution of tropospheric NO2. For each flight, 10 to 20 TROPOMI pixels were fully covered by approximately 2700 to 4000 APEX measurements within each TROPOMI pixel. The TROPOMI and APEX NO2 vertical column density (VCD) retrieval schemes are similar in concept. Overall, for the ensemble of the four flights, the standard TROPOMI NO2 VCD product is well correlated (R = 0.92) but biased negatively by −1.2 ± 1.2 × 1015 molec cm−2 or −14 ± 12 %, on average, with respect to coincident APEX NO2 retrievals. When replacing the coarse 1∘ × 1∘ the massively parallel (MP) version of the Tracer Model version 5 (TM5) a priori NO2 profiles by NO2 profile shapes from the Copernicus Atmospheric Monitoring Service (CAMS) regional chemistry transport model (CTM) ensemble at 0.1∘ × 0.1∘, R is 0.94 and the slope increases from 0.82 to 0.93. The bias is reduced to −0.1 ± 1.0 × 1015 molec cm−2 or −1.0 ± 12 %. The absolute difference is on average 1.3 × 1015 molec cm−2 (16 %) and 0.7 × 1015 molec cm−2 (9 %), when comparing APEX NO2 VCDs with TM5-MP-based and CAMS-based NO2 VCDs, respectively. Both sets of retrievals are well within the mission accuracy requirement of a maximum bias of 25 %–50 % for the TROPOMI tropospheric NO2 product for all individual compared pixels. Additionally, the APEX data set allows the study of TROPOMI subpixel variability and impact of signal smoothing due to its finite satellite pixel size, typically coarser than fine-scale gradients in the urban NO2 field. For a case study in the Antwerp region, the current TROPOMI data underestimate localized enhancements and overestimate background values by approximately 1–2 × 1015 molec cm−2 (10 %–20 %).
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2505596-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 10, No. 5 ( 2017-05-22), p. 1831-1857
    Abstract: Abstract. In this study we report on airborne imaging DOAS measurements of NO2 from two flights performed in Bucharest during the AROMAT campaign (Airborne ROmanian Measurements of Aerosols and Trace gases) in September 2014. These measurements were performed with the Airborne imaging Differential Optical Absorption Spectroscopy (DOAS) instrument for Measurements of Atmospheric Pollution (AirMAP) and provide nearly gapless maps of column densities of NO2 below the aircraft with a high spatial resolution of better than 100 m. The air mass factors, which are needed to convert the measured differential slant column densities (dSCDs) to vertical column densities (VCDs), have a strong dependence on the surface reflectance, which has to be accounted for in the retrieval. This is especially important for measurements above urban areas, where the surface properties vary strongly. As the instrument is not radiometrically calibrated, we have developed a method to derive the surface reflectance from intensities measured by AirMAP. This method is based on radiative transfer calculation with SCIATRAN and a reference area for which the surface reflectance is known. While surface properties are clearly apparent in the NO2 dSCD results, this effect is successfully corrected for in the VCD results. Furthermore, we investigate the influence of aerosols on the retrieval for a variety of aerosol profiles that were measured in the context of the AROMAT campaigns. The results of two research flights are presented, which reveal distinct horizontal distribution patterns and strong spatial gradients of NO2 across the city. Pollution levels range from background values in the outskirts located upwind of the city to about 4  ×  1016 molec cm−2 in the polluted city center. Validation against two co-located mobile car-DOAS measurements yields good agreement between the datasets, with correlation coefficients of R =  0.94 and R =  0.85, respectively. Estimations on the NOx emission rate of Bucharest for the two flights yield emission rates of 15.1 ± 9.4 and 13.6 ± 8.4 mol s−1, respectively.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2017
    detail.hit.zdb_id: 2505596-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...