GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Cell Reports, Elsevier BV, Vol. 38, No. 10 ( 2022-03), p. 110481-
    Type of Medium: Online Resource
    ISSN: 2211-1247
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2022
    detail.hit.zdb_id: 2649101-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cell Reports, Elsevier BV, Vol. 25, No. 5 ( 2018-10), p. 1109-1117.e5
    Type of Medium: Online Resource
    ISSN: 2211-1247
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2018
    detail.hit.zdb_id: 2649101-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Leukemia, Springer Science and Business Media LLC, Vol. 36, No. 11 ( 2022-11), p. 2690-2704
    Abstract: Many cancers are organized as cellular hierarchies sustained by cancer stem cells (CSC), whose eradication is crucial for achieving long-term remission. Difficulties to isolate and undertake in vitro and in vivo experimental studies of rare CSC under conditions that preserve their original properties currently constitute a bottleneck for identifying molecular mechanisms involving coding and non-coding genomic regions that govern stemness. We focussed on acute myeloid leukemia (AML) as a paradigm of the CSC model and developed a patient-derived system termed OCI-AML22 that recapitulates the cellular hierarchy driven by leukemia stem cells (LSC). Through classical flow sorting and functional analyses, we established that a single phenotypic population is highly enriched for LSC. The LSC fraction can be easily isolated and serially expanded in culture or in xenografts while faithfully recapitulating functional, transcriptional and epigenetic features of primary LSCs. A novel non-coding regulatory element was identified with a new computational approach using functionally validated primary AML LSC fractions and its role in LSC stemness validated through efficient CRISPR editing using methods optimized for OCI-AML22 LSC. Collectively, OCI-AML22 constitutes a valuable resource to uncover mechanisms governing CSC driven malignancies.
    Type of Medium: Online Resource
    ISSN: 0887-6924 , 1476-5551
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2008023-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cell Stem Cell, Elsevier BV, Vol. 14, No. 1 ( 2014-01), p. 94-106
    Type of Medium: Online Resource
    ISSN: 1934-5909
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2014
    detail.hit.zdb_id: 2375356-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Ferrata Storti Foundation (Haematologica) ; 2020
    In:  Haematologica Vol. 106, No. 1 ( 2020-02-13), p. 279-283
    In: Haematologica, Ferrata Storti Foundation (Haematologica), Vol. 106, No. 1 ( 2020-02-13), p. 279-283
    Type of Medium: Online Resource
    ISSN: 1592-8721 , 0390-6078
    Language: Unknown
    Publisher: Ferrata Storti Foundation (Haematologica)
    Publication Date: 2020
    detail.hit.zdb_id: 2186022-1
    detail.hit.zdb_id: 2030158-3
    detail.hit.zdb_id: 2805244-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Society of Hematology ; 2018
    In:  Blood Vol. 132, No. Supplement 1 ( 2018-11-29), p. 1276-1276
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 1276-1276
    Abstract: Lifelong maintenance of the blood system requires equilibrium between clearance of damaged hematopoietic stem cells (HSCs) and long-term survival of the HSC pool. Perturbations of cellular homeostasis such as nutrient deprivation, irradiation, and endoplasmic reticulum stress can result in HSC loss. However, HSCs must survive low-level stressors in order to sustain lifelong replenishment of the hematopoietic system. It is poorly understood how human HSCs balance apoptosis with survival in the context of basal stress, and how adaptive signalling is regulated in leukemia stem cells (LSCs). The Integrated Stress Response (ISR) is an adaptive pathway that can protect cells against stressors such as ROS, nutrient deprivation and misfolded proteins. To assess the expression levels of key ISR pathway components, we analyzed the proteome of purified human HSCs and progenitor cells from cord blood (CB). Quantitative label-free mass spectrometry revealed lower expression of eIF2α, eIF2β and eIF2γ subunits in HSCs compared to downstream progenitors. Furthermore, activated-transcription factor 4 (ATF4) mRNA is highly expressed in HSCs compared to progenitors. Similar to our findings in normal CB cells, analysis of acute myeloid leukemia (AML) patient samples revealed lower protein levels of eIF2α, eIF2β and eIF2γ in phenotypically primitive (CD34+CD38-) compared to differentiated (CD34+CD38+) AML cell populations. These results suggest that primitive cells in normal hematopoiesis and AML are primed for ISR activation.To assess ISR activity in human HSPCs, we used an ATF4 lentiviral reporter (ATF4rep) that measures ISR-induced ATF4 translation. We subjected ATF4rep-transduced CD34+ CB cells to hypoxia and amino acid deprivation, and found that valine depletion strongly induced ATF4rep activity. ATF4rep upregulation was abolished in the presence of an eIF2αS52A mutant that cannot be phosphorylated. Furthermore, knockdown of eIF2α, eIF2β or eIF2γ subunits in CD34+ CB cells increased ATF4rep activity. Thus, low levels of eIF2α, eIF2β or eIF2γ result in efficient ATF4 translation, and nutrient deprivation upregulates ATF4 through eIF2α phosphorylation. We assessed the effect of ATF4 upregulation on CB cell proliferation and survival. Following knockdown of ATF4 mRNA in CD34+ CB cells, the cells were incubated in valine deficient media to induce translational upregulation of ATF4. Valine depletion of shCTRL-transduced cells for 2 days did not affect proliferation or apoptosis, as measured by EdU incorporation or Annexin-V. In contrast, valine depletion of shATF4-transduced cells resulted in decreased proliferation (2-fold, P = 0.0004) and increased apoptosis (4-fold, P 〈 0.0001,). Thus, ATF4 promotes survival of primitive CD34+ CB cells undergoing valine depletion.We performed in vivo xenograft studies to examine the ISR activity in the best available setting to approximate homeostatic conditions for human HSPCs. Transplantation of ATF4rep-transduced CB cells showed that human HSPCs in the mouse bone marrow maintained a 2.4-fold higher ATF4rep activity compared to downstream progenitors (P = 0.0002). ATF4rep activity further declined in mature monocytes, granulocytes and B-cells (13-fold, P 〈 0.0001). To determine if high ISR activity is associated with improved HSC function, we transplanted lin- CB cells expressing high ATF4rep activity (GFP-high) and low ATF4rep activity (GFP-low) into mice. The level of engraftment as well as the number of engrafted mice was increased from GFP-high cells compared to GFP-low cells (P = 0.001). The hierarchical structure of normal hematopoiesis is partially maintained in AML. We evaluated ATF4rep expression in the malignant hierarchy and found that 4/5 patient samples had higher ATF4rep expression in CD34+ cells compared to CD34- cells. Furthermore, serial transplantation of ATF4rep-transduced cells showed higher engraftment from GFP-high compared to GFP-low cells ( P 〈 0.0001). Thus, primary human AML cells that possess high ISR activity are enriched for LSC function.Our data establish that the adaptive ISR pathway plays a key role in maintaining homeostasis of normal and malignant stem cells. We show that Amino acid deprivation activates the ISR in human HSPCs resulting in ATF4-dependent pro-survival signals. In an unperturbed state, HSCs are in a state of primed ISR activity, mechanistically maintained by eIF2 scarcity and high ATF4 levels. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 3832-3832
    Abstract: The gene regulatory networks (GRN) governing maintenance and expansion of normal and leukemic human hematopoietic stem-cells (HSC and LSC) are not well understood. Typically, GRNs are inferred from gene expression (GE) data of a limited subset of pre-selected genes implicated to be relevant to the cell types being studied. Such data are commonly derived from relatively homogeneous cell populations or cell lines, which do not reflect the heterogeneity of primary human samples. Importantly, there are currently no GRNs that directly interrogate the transcriptional circuitry controlling human HSC/LSC. To gain insight into the determinants of stem cell function in human HSC/LSC, we developed a unique method for building GRNs that employs GE and chromatin accessibility (ATAC-Seq) data derived from n=17 highly purified human umbilical cord blood hematopoietic stem and progenitor cell populations (hUCB-HSPC) and n=64 functionally-validated LSC-enriched and LSC-depleted cell fractions sorted from AML patient samples. Estimates of HSC/LSC frequencies based on limiting dilution xenotransplantation assays were also incorporated with statistical learning approaches to infer GRN models. Specifically, we determined transcription factor (TF) motif occurrence in HSC/LSC-enriched open chromatin regions near genes that are more highly expressed in stem versus non-stem profiles (P 〈 0.05) to identify TF-target gene interactions in HSCs and LSCs. The effect of specific TF binding on target GE was modelled using statistical regression. A database comprising n=8,927 and n=7,916 HSC and LSC specific TF-target gene relationships, respectively, was constructed. Importantly, only a small set of n=95 TF-target gene interactions overlapped between HSC and LSC, suggesting divergent regulatory rules governing stemness maintenance, as well as differential downstream effects upon targeting of specific genes. Self-sustaining transcriptional loops between subsets of TFs were detected in HSC (ETS1, EGR1, RUNX2, FOSL1, ZNF274, ZNF683) and LSC (MEIS1, FOXK1) data, representing core regulatory hubs that are likely to be important to the maintenance of the HSC/LSC state. To determine how each gene in the transcriptome may interact with the core HSC and LSC networks, n=284,606 protein-protein interactions (PPI) between n=16,540 proteins were analyzed to define n=103,516 shortest PPI pathways connecting to the core HSC/LSC TFs. Statistical regression guided by functional data was used to identify likely HSC/LSC-relevant PPI pathway activity scores, defined as weighted combinations of constituent pathway component GE values, that were highly correlated to HSC/LSC frequency estimates from xenotransplantation assays. This generated 2 lists of n=9,948 and n=45,063 HSC- and LSC-relevant PPI pathways, respectively. We next analyzed these putative HSC/LSC-relevant pathways for points of perturbation (i.e. through gene knockdown (KD) or overexpression (OE)) that could lead to changes in stemness pathway activity scores and therefore potential HSC expansion or LSC eradication, resulting in a catalogue comprising n=976 and n=3,819 HSC and LSC targets, respectively. Prediction of several anti-LSC targets, including CDK6, XPO1, mir-126, CD47, and CD123, was supported by serial xenotransplantation data from our group and others. Furthermore, the HSC GRN correctly predicted increased HSC frequency as a consequence of mir-126 or CDK6 KD, or addition of a PROCR agonist to HSC-enriched hUCB or bone marrow. These functional validations of several GRN predictions support the overall validity of our model and accuracy of untested predictions. Collectively, we report a comprehensive resource for exploring the gene regulatory wiring and extended protein interactions that define the functional state of human HSC and LSC. The constructed GRNs can also serve as an in-silico screening platform for the systematic identification of gene/protein targets that can be exploited for clinical applications, including HSC expansion and LSC eradication. Disclosures Takayama: Megakaryon co. Ltd.: Research Funding. Zandstra:ExCellThera: Equity Ownership.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 134, No. Supplement_1 ( 2019-11-13), p. 3940-3940
    Abstract: Acute myeloid leukemia (AML) is a clonal malignant disease initiated and propagated by leukemia stem cells (LSCs). Both LSCs and normal hematopoietic stem cells (HSCs) share many biological properties including self-renewal and quiescence. One such shared property that we have recently established involves the pro-survival features of proteostatic stress signaling. Stem cells have reduced protein translation initiation due to scarcity of the eIF2α translation initiation complex (van Galen et al Nature 2014; Cell Reports 2018). This in turn, increases the activity of activating transcription factor 4 (ATF4) uniquely in HSCs and LSCs. In homeostasis, this level of ATF4 facilitates stem cell persistence and survival, but upon stronger stress activation stem cell apoptosis ensues. This mechanism predicts that agonists of the integrated stress response (ISR) could provide a novel therapeutic approach to eradicate LSCs. Here we report that the novel cereblon E3 ligase modulator (CELMoD) CC-90009, which causes degradation of the translation termination factor G1 to S phase transition protein 1 (GSPT1) and downstream activation of ISR, is potent against primary AML both in vitro and in vivo, and reduces self-renewing LSCs in preclinical xenograft models for human AML. We first carried out in vitro assays to evaluate the effect of CC-90009 on primary AML samples. We found that CC-90009 degraded GSPT1 in primary AML cells and induced leukemic cell apoptosis in 24 hours. Leukemic colony forming progenitors were also reduced by CC-90009 in a dose-dependent manner. We next tested the efficacy of CC-90009 against primary AML samples in xenografts in NOD/SCID mice. Leukemia cells were transplanted intrafemorally 21 days prior to CC-90009 treatment. Mice were treated with vehicle or CC-90009 at 2.5mg/kg BID for 4 weeks. Heterogeneous responses to the CC-90009 treatment were observed. Of 35 AML samples tested, 16 were highly responsive to CC-90009 with 〉 75% reduction of AML engraftment, 10 showed moderate response between 45% and 75% reductions, and 9 showed reductions of 〈 25%. AML is clinically characterized by accumulation of blasts that are impaired for differentiation and maturation. We observed that, in addition to the reduction of total AML graft, CC-90009 also induced myeloid differentiation of AML blasts in the CC-90009 responders, as evidenced by increases in late myeloid cell surface markers (CD14, CD15 and CD11b) and reductions of the immature marker CD34. To determine the efficacy of CC-90009 against AML cases at high risk of relapse following standard induction chemotherapy, we assessed CC-90009 efficacy vs. the status of an expression-based 17-gene leukemia stem cell score (the LSC17 score) that was recently implemented for rapid risk stratification of AML patients (Ng et al, Nature 2016). LSC17-high patients are predicted to have poor treatment response and poor clinical outcome. We found that, while 8 out of 9 poor responders to CC-90009 had high LSC17 scores, 20 out of 28 samples that had high LSC17 scores responded well to CC-90009, indicating that the drug is able to target high risk cases. Serial transplantation utilizing limiting dilution analysis showed that CC-90009 targeted self-renewing LSCs. Our data established that a new CELMoD CC-90009 has anti-proliferative effects on human primary AML cells and self-renewing LSCs evaluated in xenograft assays. These observations provide important implications for CC-90009 in its clinical development as a new therapeutic agent to treat AML patients with high risk disease when treated with standard of care therapies. Currently, a phase I study evaluating CC-90009 in relapsed or refractory AML is ongoing (CC-90009-AML-001; NCT02848001). Disclosures Jin: Trillium Therapeutics: Other: licensing agreement. Ng:Celgene: Research Funding. Wang:Pfizer AG Switzerland: Honoraria, Other: Travel and accommodation; Trilium therapeutics: Other: licensing agreement, Research Funding; NanoString: Other: Travel and accommodation; Pfizer International: Honoraria, Other: Travel and accommodation. Minden:Trillium Therapetuics: Other: licensing agreement. Fan:Celgene Corporation: Employment, Equity Ownership. Pierce:Celgene Corporation: Employment, Equity Ownership. Pourdehnad:Celgene Corporation: Employment, Equity Ownership.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 76, No. 5 ( 2016-03-01), p. 1214-1224
    Abstract: Many promising new cancer drugs proceed through preclinical testing and early-phase trials only to fail in late-stage clinical testing. Thus, improved models that better predict survival outcomes and enable the development of biomarkers are needed to identify patients most likely to respond to and benefit from therapy. Here, we describe a comprehensive approach in which we incorporated biobanking, xenografting, and multiplexed phospho-flow (PF) cytometric profiling to study drug response and identify predictive biomarkers in acute myeloid leukemia (AML) patients. To test the efficacy of our approach, we evaluated the investigational JAK2 inhibitor fedratinib (FED) in 64 patient samples. FED robustly reduced leukemia in mouse xenograft models in 59% of cases and was also effective in limiting the protumorigenic activity of leukemia stem cells as shown by serial transplantation assays. In parallel, PF profiling identified FED-mediated reduction in phospho-STAT5 (pSTAT5) levels as a predictive biomarker of in vivo drug response with high specificity (92%) and strong positive predictive value (93%). Unexpectedly, another JAK inhibitor, ruxolitinib (RUX), was ineffective in 8 of 10 FED-responsive samples. Notably, this outcome could be predicted by the status of pSTAT5 signaling, which was unaffected by RUX treatment. Consistent with this observed discrepancy, PF analysis revealed that FED exerted its effects through multiple JAK2-independent mechanisms. Collectively, this work establishes an integrated approach for testing novel anticancer agents that captures the inherent variability of response caused by disease heterogeneity and in parallel, facilitates the identification of predictive biomarkers that can help stratify patients into appropriate clinical trials. Cancer Res; 76(5); 1214–24. ©2016 AACR.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2016
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 23, No. 4 ( 2017-02-15), p. 1068-1079
    Abstract: Purpose: The ubiquitously expressed transmembrane glycoprotein CD47 delivers an anti-phagocytic (do not eat) signal by binding signal-regulatory protein α (SIRPα) on macrophages. CD47 is overexpressed in cancer cells and its expression is associated with poor clinical outcomes. TTI-621 (SIRPαFc) is a fully human recombinant fusion protein that blocks the CD47–SIRPα axis by binding to human CD47 and enhancing phagocytosis of malignant cells. Blockade of this inhibitory axis using TTI-621 has emerged as a promising therapeutic strategy to promote tumor cell eradication. Experimental Design: The ability of TTI-621 to promote macrophage-mediated phagocytosis of human tumor cells was assessed using both confocal microscopy and flow cytometry. In vivo antitumor efficacy was evaluated in xenograft and syngeneic models and the role of the Fc region in antitumor activity was evaluated using SIRPαFc constructs with different Fc tails. Results: TTI-621 enhanced macrophage-mediated phagocytosis of both hematologic and solid tumor cells, while sparing normal cells. In vivo, TTI-621 effectively controlled the growth of aggressive AML and B lymphoma xenografts and was efficacious in a syngeneic B lymphoma model. The IgG1 Fc tail of TTI-621 plays a critical role in its antitumor activity, presumably by engaging activating Fcγ receptors on macrophages. Finally, TTI-621 exhibits minimal binding to human erythrocytes, thereby differentiating it from CD47 blocking antibodies. Conclusions: These data indicate that TTI-621 is active across a broad range of human tumors. These results further establish CD47 as a critical regulator of innate immune surveillance and form the basis for clinical development of TTI-621 in multiple oncology indications. Clin Cancer Res; 23(4); 1068–79. ©2016 AACR.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...