GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 670 ( 2023-02), p. A183-
    Abstract: We present a UV spectroscopic study of ionized outflows in 21 active galactic nuclei (AGN), observed with the Hubble Space Telescope (HST). The targets of the Supermassive Black Hole Winds in X-rays (SUBWAYS) sample were selected with the aim to probe the parameter space of the underexplored AGN between the local Seyfert galaxies and the luminous quasars at high redshifts. Our targets, spanning redshifts of 0.1–0.4 and bolometric luminosities ( L bol ) of 10 45 –10 46 erg s −1 , have been observed with a large multi-wavelength campaign using XMM-Newton , NuSTAR , and HST. Here, we model the UV spectra and look for different types of AGN outflows that may produce either narrow or broad UV absorption features. We examine the relations between the observed UV outflows and other properties of the AGN. We find that 60% of our targets show a presence of outflowing H  I absorption, while 40% exhibit ionized outflows seen as absorption by either C  IV , N  V , or O  VI . This is comparable to the occurrence of ionized outflows seen in the local Seyfert galaxies. All UV absorption lines in the sample are relatively narrow, with outflow velocities reaching up to −3300 km s −1 . We did not detect any UV counterparts to the X-ray ultra-fast outflows (UFOs), most likely due to their being too highly ionized to produce significant UV absorption. However, all SUBWAYS targets with an X-ray UFO that have HST data demonstrate the presence of UV outflows at lower velocities. We find significant correlations between the column density ( N ) of the UV ions and L bol of the AGN, with N H I decreasing with L bol , while N O VI is increasing with L bol . This is likely to be a photoionization effect, where toward higher AGN luminosities, the wind becomes more ionized, resulting in less absorption by neutral or low-ionization ions and more absorption by high-ionization ions. In addition, we find that N of the UV ions decreases as their outflow velocity increases. This may be explained by a mechanical power that is evacuating the UV-absorbing medium. Our observed relations are consistent with multiphase AGN feeding and feedback simulations indicating that a combination of both radiative and mechanical processes are in play.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2023
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 659 ( 2022-03), p. A161-
    Abstract: Aims. We report on the X-ray time-resolved spectral analysis of XMM-Newton observations of NGC 3783. Our main goal is to detect transient features in the Fe K line complex in order to study the dynamics of the innermost accretion flow. Methods. We reanalyse archival observations of NGC 3783, a bright local active galactic nucleus, for which a transient Fe line was reported, complementing this data set with new available observations. This results in a long set of observations which can allow us to better assess the significance of transient features and possibly test their recurrence time. Moreover, as the new data catch the source in an obscured state, this analysis allows also to test whether the appearance and disappearance of transient features is linked to the presence of obscuring gas. Results. We detect discrete features at the ≥90% significance level both in emission and in absorption at different times of the observations, split into 5 ks time-resolved spectra. The overall significance of individual features is higher in the obscured dataset. The energy distribution of the detections changes between the two states of the source, and the features appear to cluster at different energies. Counting the occurrences of emission and absorption lines at the same energies, we identify several groups of ≥3 σ detections: emission features in the 4–6 keV band are present in all observations and are most likely due to effects of the absorber present in the source; an emission line blend of neutral Fe K β and ionised Fe K α is present in the unobscured dataset; absorption lines produced by gas at different outflowing velocities and ionisation states show an increase in energy between the two epochs, shifting from ∼6.6 keV to ∼6.7 − 6.9 keV. The representation of the features in a time–energy plane via residual maps highlights a possible modulation of the Fe K α line intensity linked to the clumpiness of the absorbing medium.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 670 ( 2023-02), p. A182-
    Abstract: We present a new X-ray spectroscopic study of 22 luminous (2 × 10 45 ≲ L bol /erg s −1 ≲ 2 × 10 46 ) active galactic nuclei (AGNs) at intermediate redshifts (0.1 ≲  z  ≲ 0.4), as part of the SUpermassive Black hole Winds in the x-rAYS (SUBWAYS) sample, mostly composed of quasars and type 1 AGNs. Here, 17 targets were observed with XMM-Newton in 2019–2020, and the remaining 5 are from previous observations. The aim of this large campaign (1.45 Ms duration) is to characterise the various manifestations of winds in the X-rays driven from supermassive black holes in AGNs. In this paper we focus on the search for and characterisation of ultra-fast outflows (UFOs), which are typically detected through blueshifted absorption troughs in the Fe K band ( E   〉  7 keV). By following Monte Carlo procedures, we confirm the detection of absorption lines corresponding to highly ionised iron (e.g. Fe  XXV H α and Fe  XXVI Ly α ) in 7 out of 22 sources at the ≳95% confidence level (for each individual line). The global combined probability of such absorption features in the sample is 〉 99.9%. The SUBWAYS campaign, based on XMM-Newton , extends to higher luminosities and redshifts than previous local studies on Seyferts. We find a UFO detection fraction of ∼30% of the total sample, which is in agreement with previous findings. This work independently provides further support for the existence of highly ionised matter propagating at mildly relativistic speeds (≳0.1 c ) in a considerable fraction of AGNs over a broad range of luminosities, which is believed to play a key role in the self-regulated AGN feeding-feedback cycle, as also supported by hydrodynamical multi-phase simulations.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2023
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 490, No. 1 ( 2019-11-21), p. 683-697
    Abstract: We present XMM–Newton, NuSTAR, Swift, and Hubble Space Telescope observations of the Narrow-line Seyfert 1 galaxy Mrk 335 in a protracted low state in 2018 and 2019. The X-ray flux is at the lowest level so far observed, and the extremely low continuum flux reveals a host of soft X-ray emission lines from photoionized gas. The simultaneous UV flux drop suggests that the variability is intrinsic to the source, and we confirm this with broad-band X-ray spectroscopy. The dominance of the soft X-ray lines at low energies and distant reflection at high energies, is therefore due to the respective emission regions being located far enough from the X-ray source that they have not yet seen the flux drop. Between the two XMM–Newton spectra, taken 6 months apart, the emission line ratio in the O vii triplet changes drastically. We attribute this change to a drop in the ionization of intervening warm absorption, which means that the absorber must cover a large fraction of the line emitting region, and extend much further from the black hole than previously assumed. The HST spectrum, taken in 2018, shows that new absorption features have appeared on the blue wings of C iii*, Ly α, N v, Si iv, and C iv, likely due to absorbing gas cooling in response to the low flux state.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2019
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 672 ( 2023-04), p. A101-
    Abstract: The Type 1 active galactic nucleus (AGN) ESO 511-G030, a formerly bright and soft excess dominated source, was observed in 2019 in the context of a multi-wavelength monitoring campaign. In the new exposures, the source was found to be in a flux state approximately ten times lower than archival exposures and without any trace of the soft excess. Interestingly, the X-ray weakening observed in the 2019 data corresponds to a comparable fading of the UV flux, suggesting a strong link between these two components. The UV-X-ray spectral energy distribution (SED) of ESO 511-G030 shows remarkable variability. We tested both phenomenological and physically motivated models on the data, finding that the overall emission spectrum of ESO 511-G030 in this extremely low flux state is due to the superposition of a power-law-like continuum (Γ ∼ 1.7) and two reflection components emerging from hot and cold matter. Both the primary X-ray continuum and relativistic reflection are produced in the inner regions close to the supermassive black hole. The prominent variability of ESO 511-G030 and the lack of a soft excess can be explained by the dramatic change in the observed accretion rate, which dropped from an L / L Edd of 2% in 2007 to one of 0.2% in 2019. The X-ray photon index also became harder during the low flux observations from 2019, perhaps as a result of a photon starved X-ray corona.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2023
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2015
    In:  Science Vol. 347, No. 6224 ( 2015-02-20), p. 860-863
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 347, No. 6224 ( 2015-02-20), p. 860-863
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2015
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 635 ( 2020-03), p. A18-
    Abstract: Context. The soft X-ray band of many active galactic nuclei (AGNs) is affected by obscuration due to partially ionised matter crossing our line of sight. In this context, two past XMM-Newton observations that were six months apart and a simultaneous NuSTAR-Swift exposure of the Narrow Line Seyfert 1 galaxy 1E 0754.6+3928, which was approximately eight years later, revealed an intense and variable warm absorber (WA) and hints of additional absorbers in the Fe K α band. Aims. We aim to provide the first X-ray characterisation of this AGN by discussing its broadband (0.3–79 keV) spectrum and temporal properties. Methods. We conduct a temporal and spectroscopic analysis on two ∼10 ks (net exposure) XMM-Newton snapshots performed in April and October 2006. We also study the high energy behaviour of 1E 0754.6+3928 and model its broadband spectrum by using simultaneous Swift - NuSTAR data. Both phenomenological and physically motivated models are tested. Results. We find the presence of flux variability of ∼150% and 30% for 0.3–2 and 2–10 keV bands, respectively, and spectral changes at months timescales of ΔΓ ∼ 0.4. A reflection component that is consistent with being constant over years and arising from relatively cold material that is far from the central super massive black hole is detected. The main spectral feature shaping the 1E 0754.6+3928 spectrum is a WA. Such a component is persistent over the years and the variability of its ionisation and column density is observed down on months in the ranges 3 × 10 22 cm −2  ≲   N H  ≲ 7.2 × 10 22 cm −2 and 1.5 ≲ log ( ξ /erg s −1  cm) ≲ 2.1. Despite the short exposures, we find possible evidence of two additional high-ionisation and high-velocity outflow components in absorption. Conclusions. Our analysis suggests the existence of a complex system of absorbers in 1E 0754.6+3928. Longer exposures are required in order to characterise, on more solid grounds, the absorbers in this AGN.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2020
    In:  Monthly Notices of the Royal Astronomical Society: Letters Vol. 498, No. 1 ( 2020-10-11), p. L140-L144
    In: Monthly Notices of the Royal Astronomical Society: Letters, Oxford University Press (OUP), Vol. 498, No. 1 ( 2020-10-11), p. L140-L144
    Abstract: We present joint NuSTAR and XMM–Newton observations of the bright, variable quasar IRAS 13349+2438. This combined data set shows two clear iron absorption lines at 8 and 9 keV, which are most likely associated with two layers of mildly relativistic blueshifted absorption, with velocities of ∼0.14c and ∼0.27c. We also find strong evidence for a series of Ly α absorption lines at intermediate energies in a stacked XMM–Newton EPIC-pn spectrum, at the same blueshift as the lower velocity iron feature. This is consistent with a scenario where an outflowing wind is radially stratified, so faster, higher ionization material is observed closer to the black hole, and cooler, slower material is seen from streamlines at larger radii.
    Type of Medium: Online Resource
    ISSN: 1745-3925 , 1745-3933
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2020
    detail.hit.zdb_id: 2190759-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 662 ( 2022-06), p. A98-
    Abstract: We present new joint XMM-Newton and NuSTAR observations of APM 08279+5255, a gravitationally-lensed, broad-absorption line quasar ( z  = 3.91). After showing a fairly stable flux ( f 2 − 10  ≃ 4 − 5.5 × 10 −13 erg s −1 ) from 2000 to 2008, APM 08279+5255 was found in a fainter state in the latest X-ray exposures ( f 2 − 10  ≃ 2.7 × 10 −13 erg s −1 ), which can likely be ascribed to a lower X-ray activity. Moreover, the 2019 data present a prominent Fe K α emission line and do not show any significant absorption line. This fainter state, coupled to the first hard X-ray sampling of APM 08279+5255, allowed us to measure X-ray reflection and the high-energy cutoff in this source for the first time. From the analysis of previous XMM-Newton and Chandra observations, X-ray reflection is demonstrated to be a long-lasting feature of this source, but less prominent prior to 2008, possibly due to a stronger primary emission. The estimated high-energy cutoff ( E cut  = 99 −35 +91 keV) sets a new redshift record for the farthest ever measured and places APM 08279+5255 in the allowed region of the compactness-temperature diagram of X-ray coronae, in agreement with previous results on high- z quasars.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2022
    In:  Monthly Notices of the Royal Astronomical Society Vol. 515, No. 4 ( 2022-08-23), p. 6172-6190
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 515, No. 4 ( 2022-08-23), p. 6172-6190
    Abstract: We present a new X-Ray Accretion Disc-wind Emulator (xrade) based on the 2.5D Monte Carlo radiative transfer code that provides a physically motivated, self-consistent treatment of both absorption and emission from a disc wind by computing the local ionization state and velocity field within the flow. xrade is then implemented through a process that combines X-ray tracing with supervised machine learning. We develop a novel emulation method consisting in training, validating, and testing the simulated disc-wind spectra into a purposely built artificial neural network. The trained emulator can generate a single synthetic spectrum for a particular parameter set in a fraction of a second, in contrast to the few hours required by a standard Monte Carlo radiative transfer pipeline. The emulator does not suffer from interpolation issues with multidimensional spaces that are typically faced by traditional X-ray fitting packages such as xspec. xrade will be suitable to a wide number of sources across the black hole mass, ionizing luminosity, and accretion rate scales. As an example, we demonstrate the applicability of xrade to the physical interpretation of the X-ray spectra of the bright quasar PDS 456, which hosts the best-established accretion disc wind observed to date. We anticipate that our emulation method will be an indispensable tool for the development of high-resolution theoretical models, with the necessary flexibility to be optimized for the next generation microcalorimeters onboard future missions, like X-Ray Imaging and Spectroscopy Mission (XRISM)/Resolve and Athena/X-ray Integral Field Unit (X-IFU). This tool can also be implemented across a wide variety of X-ray spectral models and beyond.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...