GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2017
    In:  Marine Biology Vol. 164, No. 4 ( 2017-4)
    In: Marine Biology, Springer Science and Business Media LLC, Vol. 164, No. 4 ( 2017-4)
    Type of Medium: Online Resource
    ISSN: 0025-3162 , 1432-1793
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2017
    detail.hit.zdb_id: 1117-4
    detail.hit.zdb_id: 1459413-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2016
    In:  Oecologia Vol. 180, No. 3 ( 2016-3), p. 889-901
    In: Oecologia, Springer Science and Business Media LLC, Vol. 180, No. 3 ( 2016-3), p. 889-901
    Type of Medium: Online Resource
    ISSN: 0029-8549 , 1432-1939
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2016
    detail.hit.zdb_id: 1462019-4
    detail.hit.zdb_id: 123369-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2020
    In:  Journal of Plankton Research Vol. 42, No. 4 ( 2020-07-09), p. 411-424
    In: Journal of Plankton Research, Oxford University Press (OUP), Vol. 42, No. 4 ( 2020-07-09), p. 411-424
    Abstract: Many coastal oceans experience not only increased loads of nutrients but also changes in the stoichiometry of nutrient supply. Excess supply of nitrogen and stable or decreased supply of silicon lower silicon to nitrogen (Si:N) ratios, which may decrease diatom proportion in phytoplankton. To examine how Si:N ratios affect plankton community composition and food web structure, we performed a mesocosm experiment where we manipulated Si:N ratios and copepod abundance in a Baltic Sea plankton community. In high Si:N treatments, diatoms dominated. Some of them were likely spared from grazing unexpectedly resulting in higher diatom biomass under high copepod grazing. With declining Si:N ratios, dinoflagellates became more abundant under low and picoplankton under high copepod grazing. This altered plankton food web structure: under high Si:N ratios, edible diatoms were directly accessible food for copepods, while under low Si:N ratios, microzooplankton and phago-mixotrophs (mixoplankton) were a more important food source for mesograzers. The response of copepods to changes in the phytoplankton community was complex and copepod density-dependent. We suggest that declining Si:N ratios favor microzoo- and mixoplankton leading to increased complexity of planktonic food webs. Consequences on higher trophic levels will, however, likely be moderated by edibility, nutritional value or toxicity of dominant phytoplankton species.
    Type of Medium: Online Resource
    ISSN: 0142-7873 , 1464-3774
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2020
    detail.hit.zdb_id: 756271-8
    detail.hit.zdb_id: 1474909-9
    SSG: 12
    SSG: 21,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2010
    In:  Hydrobiologia Vol. 653, No. 1 ( 2010-10), p. 65-78
    In: Hydrobiologia, Springer Science and Business Media LLC, Vol. 653, No. 1 ( 2010-10), p. 65-78
    Type of Medium: Online Resource
    ISSN: 0018-8158 , 1573-5117
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2010
    detail.hit.zdb_id: 1478162-1
    detail.hit.zdb_id: 214428-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Oikos, Wiley, Vol. 126, No. 1 ( 2017-01), p. 8-17
    Abstract: Climatic warming is a primary driver of change in ecosystems worldwide. Here, we synthesize responses of species richness and evenness from 187 experimental warming studies in a quantitative meta‐analysis. We asked 1) whether effects of warming on diversity were detectable and consistent across terrestrial, freshwater and marine ecosystems, 2) if effects on diversity correlated with intensity, duration, and experimental unit size of temperature change manipulations, and 3) whether these experimental effects on diversity interacted with ecosystem types. Using multilevel mixed linear models and model averaging, we also tested the relative importance of variables that described uncontrolled environmental variation and attributes of experimental units. Overall, experimental warming reduced richness across ecosystems (mean log‐response ratio = –0.091, 95% bootstrapped CI: –0.13, –0.05) representing an 8.9% decline relative to ambient temperature treatments. Richness did not change in response to warming in freshwater systems, but was more strongly negative in terrestrial (–11.8%) and marine (–10.5%) experiments. In contrast, warming impacts on evenness were neutral overall and in aquatic systems, but weakly negative on land (7.6%). Intensity and duration of experimental warming did not explain variation in diversity responses, but negative effects on richness were stronger in smaller experimental units, particularly in marine systems. Model‐averaged parameter estimation confirmed these main effects while accounting for variation in latitude, ambient temperature at the sites of manipulations, venue (field versus lab), community trophic type, and whether experiments were open or closed to colonization. These analyses synthesize extensive experimental evidence showing declines in local richness with increased temperature, particularly in terrestrial and marine communities. However, the more variable effects of warming on evenness were better explained by the random effect of site identity, suggesting that effects on species’ relative abundances were contingent on local species composition. Synthesis A global research priority is to understand the consequences of climate change for biodiversity. A growing number of experimental studies have manipulated climatic drivers, in particular changes in temperature, in local communities. In the first quantitative meta‐analysis of community‐level studies across freshwater, marine and terrestrial experiments, species richness declined consistently with experimental warming. This effect was insensitive to warming intensity, duration, and multiple environmental and procedural covariates. However, evenness responses were weakly negative only in terrestrial systems and more variable across ecosystem types. Linear mixed model analyses revealed that the identity of local sites explained nearly 50% of variance in evenness effect sizes, compared to only 10% for richness. This result provides evidence that local species composition strongly constrains changes in relative species abundances in response to warming.
    Type of Medium: Online Resource
    ISSN: 0030-1299 , 1600-0706
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2017
    detail.hit.zdb_id: 2025658-9
    detail.hit.zdb_id: 207359-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Oikos, Wiley, Vol. 123, No. 6 ( 2014-06), p. 762-768
    Type of Medium: Online Resource
    ISSN: 0030-1299
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2014
    detail.hit.zdb_id: 2025658-9
    detail.hit.zdb_id: 207359-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Functional Ecology, Wiley, Vol. 36, No. 1 ( 2022-01), p. 120-132
    Abstract: Shifts in microbial communities and their functioning in response to environmental change result from contemporary interspecific and intraspecific diversity changes. Interspecific changes are driven by ecological shifts in species composition, while intraspecific changes are here assumed to be dominated by evolutionary shifts in genotype frequency. Quantifying the relative contributions of interspecific and intraspecific diversity shifts to community change thus addresses the essential, yet understudied question as to how important ecological and evolutionary contributions are to total community changes. This debate is to date practically constrained by (a) a lack of studies integrating across organizational levels and (b) a mismatch between data requirements of existing partitioning metrics and the feasibility to collect such data, especially in microscopic organisms like phytoplankton. We experimentally assessed the relative ecological and evolutionary contributions to total phytoplankton community changes using a new design and validated its functionality by comparisons to established partitioning metrics. We used a community of coexisting Emiliania huxleyi and Chaetoceros affinis with initially nine genotypes each. First, we exposed the community to elevated CO 2 concentration for 80 days (~50 generations) to induce interspecific and intraspecific diversity changes and a total abundance change. Second, we independently manipulated the induced interspecific and intraspecific diversity changes in an assay to quantify the corresponding ecological and evolutionary contributions to the total change. Third, we applied existing partitioning metrics to our experimental data and compared the outcomes. Total phytoplankton abundance declined to one‐fifth in the high CO 2 exposed community compared to ambient conditions. Consistently across all applied partitioning metrics, the abundance decline could predominantly be explained by ecological shifts and to a low extent by evolutionary changes. We discuss potential consequences of the observed community changes on ecosystem functioning. Furthermore, we explain that the low evolutionary contributions likely resulted of intraspecific diversity changes that occurred irrespectively of CO 2 . We discuss how the assay could be upscaled to more realistic settings, including more species and drivers. Overall, the presented calculations of eco‐evolutionary contributions to phytoplankton community changes constitute another important step towards understanding future phytoplankton shifts, and eco‐evolutionary dynamics in general. A free Plain Language Summary can be found within the Supporting Information of this article.
    Type of Medium: Online Resource
    ISSN: 0269-8463 , 1365-2435
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2020307-X
    detail.hit.zdb_id: 619313-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Limnology and Oceanography, Wiley, Vol. 61, No. 3 ( 2016-05), p. 853-868
    Abstract: Increasing seawater temperature and CO 2 concentrations both are expected to increase coastal phytoplankton biomass and carbon to nutrient ratios in nutrient limited seasonally stratified summer conditions. This is because temperature enhances phytoplankton growth while grazing is suggested to be reduced during such bottom‐up controlled situations. In addition, enhanced CO 2 concentrations potentially favor phytoplankton species, that otherwise depend on costly carbon concentrating mechanisms (CCM). The trophic consequences for consumers under such conditions, however, remain little understood. We set out to experimentally explore the combined effects of increasing temperature and CO 2 concentration for phytoplankton biomass and stoichiometry and the consequences for trophic transfer (here for copepods) on a natural nutrient limited Baltic Sea summer plankton community. The results show, that warming effects were translated to the next trophic level by switching the system from a bottom‐up controlled to a mainly top‐down controlled one. This was reflected in significantly down‐grazed phytoplankton and increased zooplankton abundance in the warm temperature treatment (22.5°C). Additionally, at low temperature (16.5°C) rising CO 2 concentrations significantly increased phytoplankton biomass. The latter effect however, was due to direct negative impact of CO 2 on copepod nauplii which released phytoplankton from grazing in the cold but not in the warm treatments. Our results suggest that future seawater warming has the potential to switch trophic relations between phytoplankton and their grazers under nutrient limited conditions with the consequence of potentially disguising CO 2 effects on coastal phytoplankton biomass.
    Type of Medium: Online Resource
    ISSN: 0024-3590 , 1939-5590
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2016
    detail.hit.zdb_id: 2033191-5
    detail.hit.zdb_id: 412737-7
    SSG: 12
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Limnology and Oceanography, Wiley, Vol. 61, No. 5 ( 2016-09), p. 1891-1899
    Type of Medium: Online Resource
    ISSN: 0024-3590
    Language: English
    Publisher: Wiley
    Publication Date: 2016
    detail.hit.zdb_id: 2033191-5
    detail.hit.zdb_id: 412737-7
    SSG: 12
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    MDPI AG ; 2021
    In:  Microorganisms Vol. 9, No. 12 ( 2021-11-26), p. 2440-
    In: Microorganisms, MDPI AG, Vol. 9, No. 12 ( 2021-11-26), p. 2440-
    Abstract: Phytoplankton cell size is important for a multitude of functional traits such as growth rates, storage capabilities, and resistance to grazing. Because these response traits are correlated, selective effects on mean community cell size of one environmental factor should impact the ability of phytoplankton to cope with other factors. Here, we experimentally apply expectations on the functional importance of phytoplankton cell size to the community level. We used a natural marine plankton community, and first altered the community’s cell size structure by exposing it to six different grazer densities. The size-shifted communities were then treated with a saturated nutrient pulse to test how the changes in community size structure influenced the mean community growth rate in the short-term (day 1–3) and nutrient storage capacity in the postbloom phase. Copepod grazing reduced the medium-sized phytoplankton and increased the share of the smallest ( 〈 10 µm3) and the largest ( 〉 100,000 µm3). Communities composed of on average small cells grew faster in response to the nutrient pulse, and thus confirmed the previously suggested growth advantage of small cells for the community level. In contrast, larger phytoplankton showed better storage capabilities, reflected in a slower post-bloom decline of communities that were on average composed of larger cells. Our findings underline that the easily measurable mean cell size of a taxonomically complex phytoplankton community can be used as an indicator trait to predict phytoplankton responses to sequential environmental changes.
    Type of Medium: Online Resource
    ISSN: 2076-2607
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2720891-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...