GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Scandinavian University Press / Universitetsforlaget AS ; 2004
    In:  Naturen Vol. 128, No. 4 ( 2004-10-06), p. 212-219
    In: Naturen, Scandinavian University Press / Universitetsforlaget AS, Vol. 128, No. 4 ( 2004-10-06), p. 212-219
    Type of Medium: Online Resource
    ISSN: 0028-0887 , 1504-3118
    Language: Norwegian
    Publisher: Scandinavian University Press / Universitetsforlaget AS
    Publication Date: 2004
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2001
    In:  Oncogene Vol. 20, No. 7 ( 2001-02-15), p. 885-892
    In: Oncogene, Springer Science and Business Media LLC, Vol. 20, No. 7 ( 2001-02-15), p. 885-892
    Type of Medium: Online Resource
    ISSN: 0950-9232 , 1476-5594
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2001
    detail.hit.zdb_id: 2008404-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 11, No. 1 ( 2020-05-08)
    Abstract: Mycobacterium tuberculosis is a global health problem in part as a result of extensive cytotoxicity caused by the infection. Here, we show how M. tuberculosis causes caspase-1/NLRP3/gasdermin D-mediated pyroptosis of human monocytes and macrophages. A type VII secretion system (ESX-1) mediated, contact-induced plasma membrane damage response occurs during phagocytosis of bacteria. Alternatively, this can occur from the cytosolic side of the plasma membrane after phagosomal rupture in infected macrophages. This damage causes K + efflux and activation of NLRP3-dependent IL-1β release and pyroptosis, facilitating the spread of bacteria to neighbouring cells. A dynamic interplay of pyroptosis with ESCRT-mediated plasma membrane repair also occurs. This dual plasma membrane damage seems to be a common mechanism for NLRP3 activators that function through lysosomal damage.
    Type of Medium: Online Resource
    ISSN: 2041-1723
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2553671-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: The FEBS Journal, Wiley, Vol. 283, No. 4 ( 2016-02), p. 757-770
    Abstract: The RNA polymerase I transcription apparatus acquires and integrates the combined information from multiple cellular signalling cascades to regulate ribosome production essential for cell growth and proliferation. In the present study, we show that a subpopulation of A‐kinase anchoring protein 95 ( AKAP 95) targets the nucleolus during interphase and is involved in regulating rRNA production. We show that AKAP 95 co‐localizes with the nucleolar upstream binding factor, an essential rRNA transcription factor. Similar to other members of the C 2 H 2 ‐zinc finger family, we show, using systematic selection and evolution of ligands by exponential enrichment and in vitro binding analysis, that AKAP 95 has a preference for GC ‐rich DNA in vitro , whereas fluorescence recovery after photobleaching analysis reveals AKAP 95 to be a highly mobile protein that exhibits RNA polymerase I and II dependent nucleolar trafficking. In line with its GC ‐binding features, chromatin immunoprecipitation analysis revealed AKAP 95 to be associated with ribosomal chromatin in vivo . Manipulation of AKAP 95‐expression in U2 OS cells revealed a reciprocal relationship between the expression of AKAP 95 and 47S rRNA . Taken together, our data indicate that AKAP 95 is a novel nucleolus‐associated protein with a regulatory role on rRNA production.
    Type of Medium: Online Resource
    ISSN: 1742-464X , 1742-4658
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2016
    detail.hit.zdb_id: 2172518-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 193, No. 12 ( 2014-12-15), p. 6081-6089
    Abstract: Competition for iron is a critical component of successful bacterial infections, but the underlying in vivo mechanisms are poorly understood. We have previously demonstrated that lipocalin 2 (LCN2) is an innate immunity protein that binds to bacterial siderophores and starves them for iron, thus representing a novel host defense mechanism to infection. In the present study we show that LCN2 is secreted by the urinary tract mucosa and protects against urinary tract infection (UTI). We found that LCN2 was expressed in the bladder, ureters, and kidneys of mice subject to UTI. LCN2 was protective with higher bacterial numbers retrieved from bladders of Lcn2-deficient mice than from wild-type mice infected with the LCN2-sensitive Escherichia coli strain H9049. Uropathogenic E. coli mutants in siderophore receptors for salmochelin, aerobactin, or yersiniabactin displayed reduced fitness in wild-type mice, but not in mice deficient of LCN2, demonstrating that LCN2 imparts a selective pressure on bacterial growth in the bladder. In a human cohort of women with recurrent E. coli UTIs, urine LCN2 levels were associated with UTI episodes and with levels of bacteriuria. The number of siderophore systems was associated with increasing bacteriuria during cystitis. Our data demonstrate that LCN2 is secreted by the urinary tract mucosa in response to uropathogenic E. coli challenge and acts in innate immune defenses as a colonization barrier that pathogens must overcome to establish infection.
    Type of Medium: Online Resource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Language: English
    Publisher: The American Association of Immunologists
    Publication Date: 2014
    detail.hit.zdb_id: 1475085-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Journal of Leukocyte Biology, Oxford University Press (OUP), Vol. 109, No. 1 ( 2021-01-01), p. 23-33
    Abstract: Mycobacterium avium (Mav) causes chronic infections in immunocompromised patients that require long-term antibiotic treatment. We have previously shown that Mav takes residence in host Mϕs and establishes a compartment (MavC) in which it is hidden from host defenses. Failure to establish the MavC traps Mav in Lamp1+ phagolysosomes where growth is prevented, and inflammatory signaling activated through TLRs 7/8. To elucidate how antibiotic treatment affects mycobacterial trafficking and host defenses, we infected human primary Mϕs with Mav for 4 days prior to treatment with a macrolide, aminoglycoside, and ethambutol. We show that Mav is killed and the MavC fuses with Lamp1+ lysosomes following antibiotic treatment. However, this does not result in nuclear translocation of NF-κB or production of inflammatory cytokines, suggesting different Lamp1+ lysosomal compartments can form that differ in their innate signaling capabilities. Thus, we show that upon antibiotic treatment of a chronic infection, Mav is quietly disposed of by Mϕs.
    Type of Medium: Online Resource
    ISSN: 0741-5400 , 1938-3673
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 2026833-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: mSystems, American Society for Microbiology, Vol. 4, No. 6 ( 2019-12-17)
    Abstract: Nontuberculous mycobacterial infections caused by the opportunistic pathogen Mycobacterium avium subsp. hominissuis (MAH) are currently receiving renewed attention due to increased incidence combined with difficult treatment. Insights into the disease-causing mechanisms of this species have been hampered by difficulties in genetic manipulation of the bacteria. Here, we identified and sequenced a highly transformable, virulent MAH clinical isolate susceptible to high-density transposon mutagenesis, facilitating global gene disruption and subsequent investigation of MAH gene function. By transposon insertion sequencing (TnSeq) of this strain, we defined the MAH genome-wide genetic requirement for virulence and in vitro growth and organized ∼3,500 identified transposon mutants for hypothesis-driven research. The majority (96%) of the genes we identified as essential for MAH in vitro had a mutual ortholog in the related and highly virulent Mycobacterium tuberculosis ( Mtb ). However, passaging our library through a mouse model of infection revealed a substantial number (54% of total hits) of novel virulence genes. More than 97% of the MAH virulence genes had a mutual ortholog in Mtb . Finally, we validated novel genes required for successful MAH infection: one encoding a probable major facilitator superfamily (MFS) transporter and another encoding a hypothetical protein located in the immediate vicinity of six other identified virulence genes. In summary, we provide new, fundamental insights into the underlying genetic requirement of MAH for growth and host infection. IMPORTANCE Pulmonary disease caused by nontuberculous mycobacteria is increasing worldwide. The majority of these infections are caused by the Mycobacterium avium complex (MAC), whereof 〉 90% are due to Mycobacterium avium subsp. hominissuis (MAH). Treatment of MAH infections is currently difficult, with a combination of antibiotics given for at least 12 months. To control MAH by improved therapy, prevention, and diagnostics, we need to understand the underlying mechanisms of infection. Here, we provide crucial insights into MAH’s global genetic requirements for growth and infection. We find that the vast majority of genes required for MAH growth and virulence (96% and 97%, respectively) have mutual orthologs in the tuberculosis-causing pathogen M. tuberculosis ( Mtb ). However, we also find growth and virulence genes specific to MAC species. Finally, we validate novel mycobacterial virulence factors that might serve as future drug targets for MAH-specific treatment or translate to broader treatment of related mycobacterial diseases.
    Type of Medium: Online Resource
    ISSN: 2379-5077
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2019
    detail.hit.zdb_id: 2844333-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Chemical Society (ACS) ; 2003
    In:  Biochemistry Vol. 42, No. 35 ( 2003-09-01), p. 10456-10461
    In: Biochemistry, American Chemical Society (ACS), Vol. 42, No. 35 ( 2003-09-01), p. 10456-10461
    Type of Medium: Online Resource
    ISSN: 0006-2960 , 1520-4995
    RVK:
    Language: English
    Publisher: American Chemical Society (ACS)
    Publication Date: 2003
    detail.hit.zdb_id: 1472258-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 112, No. 31 ( 2015-08-04)
    Abstract: Several mechanisms are involved in controlling intracellular survival of pathogenic mycobacteria in host macrophages, but how these mechanisms are regulated remains poorly understood. We report a role for Kelch-like ECH-associated protein 1 (Keap1), an oxidative stress sensor, in regulating inflammation induced by infection with Mycobacterium avium in human primary macrophages. By using confocal microscopy, we found that Keap1 associated with mycobacterial phagosomes in a time-dependent manner, whereas siRNA-mediated knockdown of Keap1 increased M. avium -induced expression of inflammatory cytokines and type I interferons (IFNs). We show evidence of a mechanism whereby Keap1, as part of an E3 ubiquitin ligase complex with Cul3 and Rbx1, facilitates ubiquitination and degradation of IκB kinase (IKK)-β thus terminating IKK activity. Keap1 knockdown led to increased nuclear translocation of transcription factors NF-κB, IFN regulatory factor (IRF) 1, and IRF5 driving the expression of inflammatory cytokines and IFN-β. Furthermore, knockdown of other members of the Cul3 ubiquitin ligase complex also led to increased cytokine expression, further implicating this ligase complex in the regulation of the IKK family. Finally, increased inflammatory responses in Keap1-silenced cells contributed to decreased intracellular growth of M. avium in primary human macrophages that was reconstituted with inhibitors of IKKβ or TANK-binding kinase 1 (TBK1). Taken together, we propose that Keap1 acts as a negative regulator for the control of inflammatory signaling in M. avium -infected human primary macrophages. Although this might be important to avoid sustained or overwhelming inflammation, our data suggest that a negative consequence could be facilitated growth of pathogens like M. avium inside macrophages.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2015
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Immunology, Wiley, Vol. 140, No. 2 ( 2013-10), p. 232-243
    Abstract: Opportunistic infections with non‐tuberculous mycobacteria such as M ycobacterium avium are receiving renewed attention because of increased incidence and difficulties in treatment. As for other mycobacterial infections, a still poorly understood collaboration of different immune effector mechanisms is required to confer protective immunity. Here we have characterized the interplay of innate and adaptive immune effector mechanisms contributing to containment in a mouse infection model using virulent M . avium strain 104 in C57 BL /6 mice. M . avium caused chronic infection in mice, as shown by sustained organ bacterial load. In the liver, bacteria were contained in granuloma‐like structures that could be defined morphologically by expression of the antibacterial innate effector protein Lipocalin 2 in the adjoining hepatocytes and infiltrating neutrophils, possibly contributing to containment. Circulatory anti‐mycobacterial antibodies steadily increased throughout infection and were primarily of the IgM isotype. Highest levels of interferon‐γ were found in infected liver, spleen and serum of mice approximately 2 weeks post infection and coincided with a halt in organ bacterial growth. In contrast, expression of tumour necrosis factor was surprisingly low in spleen compared with liver. We did not detect interleukin‐17 in infected organs or M . avium ‐specific T helper 17 cells, suggesting a minor role for T helper 17 cells in this model. A transient and relative decrease in regulatory T cell numbers was seen in spleens. This detailed characterization of M . avium infection in C57 BL /6 mice may provide a basis for future studies aimed at gaining better insight into mechanisms leading to containment of infections with non‐tuberculous mycobacteria.
    Type of Medium: Online Resource
    ISSN: 0019-2805 , 1365-2567
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2013
    detail.hit.zdb_id: 2006481-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...