GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Molecular Therapy - Nucleic Acids, Elsevier BV, Vol. 20 ( 2020-06), p. 739-753
    Type of Medium: Online Resource
    ISSN: 2162-2531
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2020
    detail.hit.zdb_id: 2662631-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Wiley ; 2012
    In:  WIREs Systems Biology and Medicine Vol. 4, No. 1 ( 2012-01), p. 1-14
    In: WIREs Systems Biology and Medicine, Wiley, Vol. 4, No. 1 ( 2012-01), p. 1-14
    Abstract: Cancer is arguably the ultimate complex biological system. Solid tumors are microstructured soft matter that evolves as a consequence of spatio‐temporal events at the intracellular (e.g., signaling pathways, macromolecular trafficking), intercellular (e.g., cell–cell adhesion/communication), and tissue (e.g., cell–extracellular matrix interactions, mechanical forces) scales. To gain insight, tumor and developmental biologists have gathered a wealth of molecular, cellular, and genetic data, including immunohistochemical measurements of cell type‐specific division and death rates, lineage tracing, and gain‐of‐function/loss‐of‐function mutational analyses. These data are empirically extrapolated to a diagnosis/prognosis of tissue‐scale behavior, e.g., for clinical decision. Integrative physical oncology (IPO) is the science that develops physically consistent mathematical approaches to address the significant challenge of bridging the nano (nm)–micro (µm) to macro (mm, cm) scales with respect to tumor development and progression. In the current literature, such approaches are referred to as multiscale modeling. In the present article, we attempt to assess recent modeling approaches on each separate scale and critically evaluate the current ‘hybrid‐multiscale’ models used to investigate tumor growth in the context of brain and breast cancers. Finally, we provide our perspective on the further development and the impact of IPO. WIREs Syst Biol Med 2012, 4:1–14. doi: 10.1002/wsbm.158 This article is categorized under: Analytical and Computational Methods 〉 Computational Methods
    Type of Medium: Online Resource
    ISSN: 1939-5094 , 1939-005X
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2012
    detail.hit.zdb_id: 3119452-7
    detail.hit.zdb_id: 2503327-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2011
    In:  Bulletin of Mathematical Biology Vol. 73, No. 11 ( 2011-11), p. 2678-2706
    In: Bulletin of Mathematical Biology, Springer Science and Business Media LLC, Vol. 73, No. 11 ( 2011-11), p. 2678-2706
    Type of Medium: Online Resource
    ISSN: 0092-8240 , 1522-9602
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2011
    detail.hit.zdb_id: 1462512-X
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Nucleic Acids Research, Oxford University Press (OUP), Vol. 49, No. D1 ( 2021-01-08), p. D651-D659
    Abstract: Gram-negative bacteria utilize secretion systems to export substrates into their surrounding environment or directly into neighboring cells. These substrates are proteins that function to promote bacterial survival: by facilitating nutrient collection, disabling competitor species or, for pathogens, to disable host defenses. Following a rapid development of computational techniques, a growing number of substrates have been discovered and subsequently validated by wet lab experiments. To date, several online databases have been developed to catalogue these substrates but they have limited user options for in-depth analysis, and typically focus on a single type of secreted substrate. We therefore developed a universal platform, BastionHub, that incorporates extensive functional modules to facilitate substrate analysis and integrates the five major Gram-negative secreted substrate types (i.e. from types I–IV and VI secretion systems). To our knowledge, BastionHub is not only the most comprehensive online database available, it is also the first to incorporate substrates secreted by type I or type II secretion systems. By providing the most up-to-date details of secreted substrates and state-of-the-art prediction and visualized relationship analysis tools, BastionHub will be an important platform that can assist biologists in uncovering novel substrates and formulating new hypotheses. BastionHub is freely available at http://bastionhub.erc.monash.edu/.
    Type of Medium: Online Resource
    ISSN: 0305-1048 , 1362-4962
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 1472175-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Bioinformatics, Oxford University Press (OUP), Vol. 36, No. 3 ( 2020-02-01), p. 704-712
    Abstract: Gram-positive bacteria have developed secretion systems to transport proteins across their cell wall, a process that plays an important role during host infection. These secretion mechanisms have also been harnessed for therapeutic purposes in many biotechnology applications. Accordingly, the identification of features that select a protein for efficient secretion from these microorganisms has become an important task. Among all the secreted proteins, ‘non-classical’ secreted proteins are difficult to identify as they lack discernable signal peptide sequences and can make use of diverse secretion pathways. Currently, several computational methods have been developed to facilitate the discovery of such non-classical secreted proteins; however, the existing methods are based on either simulated or limited experimental datasets. In addition, they often employ basic features to train the models in a simple and coarse-grained manner. The availability of more experimentally validated datasets, advanced feature engineering techniques and novel machine learning approaches creates new opportunities for the development of improved predictors of ‘non-classical’ secreted proteins from sequence data. Results In this work, we first constructed a high-quality dataset of experimentally verified ‘non-classical’ secreted proteins, which we then used to create benchmark datasets. Using these benchmark datasets, we comprehensively analyzed a wide range of features and assessed their individual performance. Subsequently, we developed a two-layer Light Gradient Boosting Machine (LightGBM) ensemble model that integrates several single feature-based models into an overall prediction framework. At this stage, LightGBM, a gradient boosting machine, was used as a machine learning approach and the necessary parameter optimization was performed by a particle swarm optimization strategy. All single feature-based LightGBM models were then integrated into a unified ensemble model to further improve the predictive performance. Consequently, the final ensemble model achieved a superior performance with an accuracy of 0.900, an F-value of 0.903, Matthew’s correlation coefficient of 0.803 and an area under the curve value of 0.963, and outperforming previous state-of-the-art predictors on the independent test. Based on our proposed optimal ensemble model, we further developed an accessible online predictor, PeNGaRoo, to serve users’ demands. We believe this online web server, together with our proposed methodology, will expedite the discovery of non-classically secreted effector proteins in Gram-positive bacteria and further inspire the development of next-generation predictors. Availability and implementation http://pengaroo.erc.monash.edu/. Supplementary information Supplementary data are available at Bioinformatics online.
    Type of Medium: Online Resource
    ISSN: 1367-4803 , 1367-4811
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2020
    detail.hit.zdb_id: 1468345-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2022
    In:  Scientific Reports Vol. 12, No. 1 ( 2022-07-11)
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 12, No. 1 ( 2022-07-11)
    Abstract: Progesterone receptor (PR) transcriptional activity is a key factor in the differentiation of the uterine endometrium. By consequence, progestin has been identified as an important treatment modality for endometrial cancer. PR transcriptional activity is controlled by extracellular-signal-regulated kinase (ERK) mediated phosphorylation, downstream of growth factor receptors such as EGFR. However, phosphorylation of PR also targets it for ubiquitination and destruction in the proteasome. Quantitative studies of these opposing roles are much needed toward validation of potential new progestin-based therapeutics. In this work, we propose a spatial stochastic model to study the effects of the opposing roles for PR phosphorylation on the levels of active transcription factor. Our numerical simulations confirm earlier in vitro experiments in endometrial cancer cell lines, identifying clustering as a mechanism that amplifies the ability of progesterone receptors to influence gene transcription. We additionally show the usefulness of a statistical method we developed to quantify and control variations in stochastic simulations in general biochemical systems, assisting modelers in defining minimal but meaningful numbers of simulations while guaranteeing outputs remain within a pre-defined confidence level.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    The Royal Society ; 2014
    In:  Royal Society Open Science Vol. 1, No. 2 ( 2014-10), p. 140186-
    In: Royal Society Open Science, The Royal Society, Vol. 1, No. 2 ( 2014-10), p. 140186-
    Abstract: Predator–prey relationships are one of the most studied interactions in population ecology. However, little attention has been paid to the possibility of role exchange between species, despite firm field evidence of such phenomena in nature. In this paper, we build a mathematical model capable of reproducing the main phenomenological features of role reversal in a classical system and present results for both the temporal and spatio-temporal cases. We show that, depending on the choice of parameters, our role-reversal dynamical system exhibits excitable-like behaviour, generating waves of species' concentrations that propagate through space. Our findings fill a long-standing gap in modelling ecological interactions and can be applicable to better understanding ecological niche shifts and planning of sustainable ecosystems.
    Type of Medium: Online Resource
    ISSN: 2054-5703
    Language: English
    Publisher: The Royal Society
    Publication Date: 2014
    detail.hit.zdb_id: 2787755-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2009
    In:  Nature Vol. 457, No. 7227 ( 2009-1), p. 309-312
    In: Nature, Springer Science and Business Media LLC, Vol. 457, No. 7227 ( 2009-1), p. 309-312
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2009
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Briefings in Bioinformatics, Oxford University Press (OUP), Vol. 22, No. 3 ( 2021-05-20)
    Abstract: Virulence factors (VFs) enable pathogens to infect their hosts. A wealth of individual, disease-focused studies has identified a wide variety of VFs, and the growing mass of bacterial genome sequence data provides an opportunity for computational methods aimed at predicting VFs. Despite their attractive advantages and performance improvements, the existing methods have some limitations and drawbacks. Firstly, as the characteristics and mechanisms of VFs are continually evolving with the emergence of antibiotic resistance, it is more and more difficult to identify novel VFs using existing tools that were previously developed based on the outdated data sets; secondly, few systematic feature engineering efforts have been made to examine the utility of different types of features for model performances, as the majority of tools only focused on extracting very few types of features. By addressing the aforementioned issues, the accuracy of VF predictors can likely be significantly improved. This, in turn, would be particularly useful in the context of genome wide predictions of VFs. In this work, we present a deep learning (DL)-based hybrid framework (termed DeepVF) that is utilizing the stacking strategy to achieve more accurate identification of VFs. Using an enlarged, up-to-date dataset, DeepVF comprehensively explores a wide range of heterogeneous features with popular machine learning algorithms. Specifically, four classical algorithms, including random forest, support vector machines, extreme gradient boosting and multilayer perceptron, and three DL algorithms, including convolutional neural networks, long short-term memory networks and deep neural networks are employed to train 62 baseline models using these features. In order to integrate their individual strengths, DeepVF effectively combines these baseline models to construct the final meta model using the stacking strategy. Extensive benchmarking experiments demonstrate the effectiveness of DeepVF: it achieves a more accurate and stable performance compared with baseline models on the benchmark dataset and clearly outperforms state-of-the-art VF predictors on the independent test. Using the proposed hybrid ensemble model, a user-friendly online predictor of DeepVF (http://deepvf.erc.monash.edu/) is implemented. Furthermore, its utility, from the user’s viewpoint, is compared with that of existing toolkits. We believe that DeepVF will be exploited as a useful tool for screening and identifying potential VFs from protein-coding gene sequences in bacterial genomes.
    Type of Medium: Online Resource
    ISSN: 1467-5463 , 1477-4054
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 2036055-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Briefings in Bioinformatics, Oxford University Press (OUP), Vol. 22, No. 5 ( 2021-09-02)
    Abstract: Antimicrobial peptides (AMPs) are a unique and diverse group of molecules that play a crucial role in a myriad of biological processes and cellular functions. AMP-related studies have become increasingly popular in recent years due to antimicrobial resistance, which is becoming an emerging global concern. Systematic experimental identification of AMPs faces many difficulties due to the limitations of current methods. Given its significance, more than 30 computational methods have been developed for accurate prediction of AMPs. These approaches show high diversity in their data set size, data quality, core algorithms, feature extraction, feature selection techniques and evaluation strategies. Here, we provide a comprehensive survey on a variety of current approaches for AMP identification and point at the differences between these methods. In addition, we evaluate the predictive performance of the surveyed tools based on an independent test data set containing 1536 AMPs and 1536 non-AMPs. Furthermore, we construct six validation data sets based on six different common AMP databases and compare different computational methods based on these data sets. The results indicate that amPEPpy achieves the best predictive performance and outperforms the other compared methods. As the predictive performances are affected by the different data sets used by different methods, we additionally perform the 5-fold cross-validation test to benchmark different traditional machine learning methods on the same data set. These cross-validation results indicate that random forest, support vector machine and eXtreme Gradient Boosting achieve comparatively better performances than other machine learning methods and are often the algorithms of choice of multiple AMP prediction tools.
    Type of Medium: Online Resource
    ISSN: 1467-5463 , 1477-4054
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 2036055-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...