GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 39, No. 24 ( 2012-12-28)
    Abstract: Parameterized convective cloud and radiation interactions Impacts on weather and climate Credible weather and climate simulations
    Type of Medium: Online Resource
    ISSN: 0094-8276 , 1944-8007
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2012
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2019
    In:  Journal of Geophysical Research: Atmospheres Vol. 124, No. 16 ( 2019-08-27), p. 9117-9140
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 124, No. 16 ( 2019-08-27), p. 9117-9140
    Abstract: WRF's Noah LSM is used in a dynamical downscaling application to compare the effects of mosaic land use against using the dominant category Within the United States, mosaic increases urban area and reduces forest and cultivated land, leading to warmer temperatures and less precipitation Within large cities, the opposite trend occurs, as greenspace within cities increases and 2‐m temperatures are reduced
    Type of Medium: Online Resource
    ISSN: 2169-897X , 2169-8996
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2019
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 2969341-X
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2014
    In:  Journal of Geophysical Research: Atmospheres Vol. 119, No. 12 ( 2014-06-27), p. 7193-7208
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 119, No. 12 ( 2014-06-27), p. 7193-7208
    Type of Medium: Online Resource
    ISSN: 2169-897X
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2014
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 2969341-X
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Meteorological Society ; 2016
    In:  Journal of Climate Vol. 29, No. 2 ( 2016-01-15), p. 839-853
    In: Journal of Climate, American Meteorological Society, Vol. 29, No. 2 ( 2016-01-15), p. 839-853
    Abstract: The impact of incongruous lake temperatures is demonstrated using the Weather Research and Forecasting (WRF) Model to downscale global climate fields. Unrealistic lake temperatures prescribed by the default WRF configuration cause obvious biases near the lakes and also affect predicted extremes hundreds of kilometers from the lakes, especially during winter. Using these default temperatures for the Great Lakes in winter creates a thermally induced wave in the modeled monthly average sea level pressure field, which reaches southern Florida. Differences of more than 0.5 K in monthly average daily maximum 2-m temperature occur along that wave during winter. Noteworthy changes to temperature variability, precipitation, and mesoscale circulation also occur when the default method is used for downscaling. Consequently, improperly setting lake temperatures for downscaling could result in misinterpreting changes in regional climate and adversely affect applications reliant on downscaled data, even in areas remote from the lakes.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2016
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Meteorological Society ; 2014
    In:  Journal of Applied Meteorology and Climatology Vol. 53, No. 1 ( 2014-01), p. 20-33
    In: Journal of Applied Meteorology and Climatology, American Meteorological Society, Vol. 53, No. 1 ( 2014-01), p. 20-33
    Abstract: Previous research has demonstrated the ability to use the Weather Research and Forecasting model (WRF) and contemporary dynamical downscaling methods to refine global climate modeling results to a horizontal grid spacing of 36 km. Environmental managers and urban planners have expressed the need for even finer resolution in projections of surface-level weather to take into account local geophysical and urbanization patterns. In this study, WRF as previously applied at 36-km grid spacing is used with 12-km grid spacing with one-way nesting to simulate the year 2006 over the central and eastern United States. The results at both resolutions are compared with hourly observations of surface air temperature, humidity, and wind speed. The 12- and 36-km simulations are also compared with precipitation data from three separate observation and analysis systems. The results show some additional accuracy with the refinement to 12-km horizontal grid spacing, but only when some form of interior nudging is applied. A positive bias in precipitation found previously in the 36-km results becomes worse in the 12-km simulation, especially without the application of interior nudging. Model sensitivity testing shows that 12-km grid spacing can further improve accuracy for certain meteorological variables when alternate physics options are employed. However, the strong positive bias found for both surface-level water vapor and precipitation suggests that WRF as configured here may have an unbalanced hydrologic cycle that is returning moisture from land and/or water bodies to the atmosphere too quickly.
    Type of Medium: Online Resource
    ISSN: 1558-8424 , 1558-8432
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2014
    detail.hit.zdb_id: 2227779-1
    detail.hit.zdb_id: 2227759-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 18, No. 20 ( 2018-10-29), p. 15471-15489
    Abstract: Abstract. The potential impacts of climate change on regional ozone (O3) and fine particulate (PM2.5) air quality in the United States (US) are investigated by linking global climate simulations with regional-scale meteorological and chemical transport models. Regional climate at 2000 and at 2030 under three Representative Concentration Pathways (RCPs) is simulated by using the Weather Research and Forecasting (WRF) model to downscale 11-year time slices from the Community Earth System Model (CESM). The downscaled meteorology is then used with the Community Multiscale Air Quality (CMAQ) model to simulate air quality during each of these 11-year periods. The analysis isolates the future air quality differences arising from climate-driven changes in meteorological parameters and specific natural emissions sources that are strongly influenced by meteorology. Other factors that will affect future air quality, such as anthropogenic air pollutant emissions and chemical boundary conditions, are unchanged across the simulations. The regional climate fields represent historical daily maximum and daily minimum temperatures well, with mean biases of less than 2 K for most regions of the US and most seasons of the year and good representation of variability. Precipitation in the central and eastern US is well simulated for the historical period, with seasonal and annual biases generally less than 25 %, with positive biases exceeding 25 % in the western US throughout the year and in part of the eastern US during summer. Maximum daily 8 h ozone (MDA8 O3) is projected to increase during summer and autumn in the central and eastern US. The increase in summer mean MDA8 O3 is largest under RCP8.5, exceeding 4 ppb in some locations, with smaller seasonal mean increases of up to 2 ppb simulated during autumn and changes during spring generally less than 1 ppb. Increases are magnified at the upper end of the O3 distribution, particularly where projected increases in temperature are greater. Annual average PM2.5 concentration changes range from −1.0 to 1.0 µg m−3. Organic PM2.5 concentrations increase during summer and autumn due to increased biogenic emissions. Aerosol nitrate decreases during winter, accompanied by lesser decreases in ammonium and sulfate, due to warmer temperatures causing increased partitioning to the gas phase. Among meteorological factors examined to account for modeled changes in pollution, temperature and isoprene emissions are found to have the largest changes and the greatest impact on O3 concentrations.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2018
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Meteorological Society ; 2018
    In:  Journal of Applied Meteorology and Climatology Vol. 57, No. 8 ( 2018-08), p. 1883-1906
    In: Journal of Applied Meteorology and Climatology, American Meteorological Society, Vol. 57, No. 8 ( 2018-08), p. 1883-1906
    Abstract: The use of nudging in the Weather Research and Forecasting (WRF) Model to constrain regional climate downscaling simulations is gaining in popularity because it can reduce error and improve consistency with the driving data. While some attention has been paid to whether nudging is beneficial for downscaling, very little research has been performed to determine best practices. In fact, many published papers use the default nudging configuration (which was designed for numerical weather prediction), follow practices used by colleagues, or adapt methods developed for other regional climate models. Here, a suite of 45 three-year simulations is conducted with WRF over the continental United States to systematically and comprehensively examine a variety of nudging strategies. The simulations here use a longer test period than did previously published works to better evaluate the robustness of each strategy through all four seasons, through multiple years, and across nine regions of the United States. The analysis focuses on the evaluation of 2-m temperature and precipitation, which are two of the most commonly required downscaled output fields for air quality, health, and ecosystems applications. Several specific recommendations are provided to effectively use nudging in WRF for regional climate applications. In particular, spectral nudging is preferred over analysis nudging. Spectral nudging performs best in WRF when it is used toward wind above the planetary boundary layer (through the stratosphere) and temperature and moisture only within the free troposphere. Furthermore, the nudging toward moisture is very sensitive to the nudging coefficient, and the default nudging coefficient in WRF is too high to be used effectively for moisture.
    Type of Medium: Online Resource
    ISSN: 1558-8424 , 1558-8432
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2018
    detail.hit.zdb_id: 2227779-1
    detail.hit.zdb_id: 2227759-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Meteorological Society ; 2018
    In:  Journal of Applied Meteorology and Climatology Vol. 57, No. 11 ( 2018-11), p. 2561-2583
    In: Journal of Applied Meteorology and Climatology, American Meteorological Society, Vol. 57, No. 11 ( 2018-11), p. 2561-2583
    Abstract: Land-use (LU) representation plays a critical role in simulating air–surface interactions that affect meteorological conditions and regional climate. In the Noah LSM within the WRF Model, LU categories are used to set the radiative properties of the surface and to influence exchanges of heat, moisture, and momentum between the air and land surface. Previous literature examined the sensitivity of WRF simulations to LU using short-term meteorological modeling approaches. Here, the sensitivity to LU representation is studied using continental-scale dynamical downscaling, which typically uses longer temporal and larger spatial scales. Two LU datasets, the U.S. Geological Survey (USGS) dataset and the 2006 National Land Cover Dataset (NLCD), are utilized in 3-yr dynamically downscaled WRF simulations over a historical period. Precipitation and 2-m air temperature are evaluated against observation-based datasets for simulations covering the contiguous United States. The WRF-NLCD simulation tends to produce lower precipitation than the WRF-USGS run, with slightly warmer mean monthly temperatures. However, WRF-NLCD results in more notable increases in the frequency of hot days [i.e., days with temperature 〉 90°F (32.2°C)]. These changes are attributable to reductions in forest and agricultural area in the NLCD relative to USGS. There is also subtle but important sensitivity to the method of interpolating LU data to the WRF grid in the model preprocessing. In all cases, the sensitivity resulting from changes in the LU is smaller than model error. Although this sensitivity is small, it persists across spatial and temporal scales.
    Type of Medium: Online Resource
    ISSN: 1558-8424 , 1558-8432
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2018
    detail.hit.zdb_id: 2227779-1
    detail.hit.zdb_id: 2227759-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Meteorological Society ; 2013
    In:  Journal of Climate Vol. 26, No. 13 ( 2013-07-01), p. 4876-4893
    In: Journal of Climate, American Meteorological Society, Vol. 26, No. 13 ( 2013-07-01), p. 4876-4893
    Abstract: The Weather Research and Forecasting (WRF) model is used in a downscaling experiment to simulate a portion of the Atlantic hurricane season both in present-day conditions and with modifications to include future thermodynamic changes. Temperature and moisture changes are derived from an ensemble of climate simulations from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) A1B scenario and added to analyzed initial and lateral boundary conditions, leaving horizontal temperature gradients and vertical wind shear unaltered. This method of downscaling excludes future changes in shear and incipient disturbances, thereby isolating the thermodynamic component of climate change and its effect on tropical cyclone (TC) activity. The North Atlantic basin is simulated with 18- and 6-km grid spacing, and a four-member physics ensemble is composed by varying microphysical and boundary layer parameterization schemes. This ensemble is used in monthly simulations during an active (2005) and inactive (2009) season, and the simulations are able to capture the change in activity between the different years. TC frequency is better reproduced with use of 6-km grid spacing and explicitly simulated convection, relative to simulations with 18-km grid spacing. A detailed comparison of present-day and future ensemble results is provided in a companion study.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2013
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Informa UK Limited ; 2021
    In:  Journal of the Air & Waste Management Association Vol. 71, No. 10 ( 2021-10-03), p. 1251-1264
    In: Journal of the Air & Waste Management Association, Informa UK Limited, Vol. 71, No. 10 ( 2021-10-03), p. 1251-1264
    Type of Medium: Online Resource
    ISSN: 1096-2247 , 2162-2906
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 2021
    detail.hit.zdb_id: 1003064-5
    detail.hit.zdb_id: 2191313-4
    detail.hit.zdb_id: 2048696-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...