GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Science of The Total Environment, Elsevier BV, Vol. 881 ( 2023-07), p. 163413-
    Type of Medium: Online Resource
    ISSN: 0048-9697
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2023
    detail.hit.zdb_id: 121506-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Wiley ; 2016
    In:  Ecological Applications Vol. 26, No. 4 ( 2016-06), p. 1249-1259
    In: Ecological Applications, Wiley, Vol. 26, No. 4 ( 2016-06), p. 1249-1259
    Abstract: Ecological risk assessment depends strongly on species sensitivity data. Typically, sensitivity data are based on laboratory toxicity bioassays, which for practical constraints cannot be exhaustively performed for all species and chemicals available. Bilinear models integrating phylogenetic information of species and physicochemical properties of compounds allow to predict species sensitivity to chemicals. Combining the molecular information ( DNA sequences) of 31 invertebrate species with the physicochemical properties of six bivalent metals, we built bilinear models that explained 70–80% of the variability in species sensitivity to heavy metals. Phylogeny was the most important component of the bilinear models, as it explained the major part of the explained variance ( 〉 40%). Predicted values from bilinear modeling were in agreement with experimental values ( 〉 50%); therefore, this approach is a good starting point to build statistical models which can potentially predict heavy metal toxicity for untested invertebrate species based on empirical values for similar species. Despite their good performance, development of the presented bilinear models would benefit from improved phylogenetic and toxicological datasets. Our analysis is an example for linking evolutionary biology with applied ecotoxicology. Its future applications may encompass other stress factors or traits influencing the survival of aquatic organisms in polluted environments.
    Type of Medium: Online Resource
    ISSN: 1051-0761 , 1939-5582
    Language: English
    Publisher: Wiley
    Publication Date: 2016
    detail.hit.zdb_id: 1074505-1
    detail.hit.zdb_id: 2010123-5
    SSG: 12
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Frontiers Media SA ; 2020
    In:  Frontiers in Environmental Science Vol. 8 ( 2020-11-5)
    In: Frontiers in Environmental Science, Frontiers Media SA, Vol. 8 ( 2020-11-5)
    Type of Medium: Online Resource
    ISSN: 2296-665X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2020
    detail.hit.zdb_id: 2741535-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Wiley ; 2016
    In:  Freshwater Biology Vol. 61, No. 12 ( 2016-12), p. 2116-2128
    In: Freshwater Biology, Wiley, Vol. 61, No. 12 ( 2016-12), p. 2116-2128
    Abstract: River ecosystems are threatened by multiple stressors, including habitat degradation, pollution and invasive species. However, freshwater ecologists have largely disregarded the contribution of toxicants to stress in rivers, whereas ecotoxicologists have primarily examined toxicant effects in artificial systems. As a result, there is a paucity of information on the co‐occurrence of organic toxicants with other stressors and on the relative importance of toxicants for overall ecological risk in rivers. We used monitoring data for German rivers to analyse the individual and joint occurrence of four stressors: habitat degradation, invasive species, nutrient pollution and organic toxicants. All stressors were examined for ecological risks in terms of whether they exceeded low‐ and high‐risk thresholds derived from published studies and regulatory thresholds. Nutrients and habitat degradation exceeded low and high risk thresholds at c. 85% of the sites and invasive species and organic toxicants at c. 50% of the sites. At least one stressor exceeded thresholds at all sites for which data on all four stressors were available. Toxicity showed weak positive correlations with nutrients and habitat degradation (0.2  〈  Spearman's ρ  〈  0.34, 0.009  〈   P   〈  0.08). The risks of ecological effects arising from habitat degradation and invasive species were higher in lowland rivers, particularly for invasive species. Our assessment shows that organic toxicants contribute notably to risks of ecological effects in rivers, to a similar extent as invasive species, although habitat degradation and nutrients are the dominant stressors. Exposure to multiple stressors is the typical situation prevailing in rivers. Consequently, mitigation measures focusing on individual stressors may not be effective at reducing ecological risks. This suggests that integrating concepts and data from freshwater ecology and ecotoxicology is essential to meet the challenge of managing multiple stressors in river ecosystems.
    Type of Medium: Online Resource
    ISSN: 0046-5070 , 1365-2427
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2016
    detail.hit.zdb_id: 2020306-8
    detail.hit.zdb_id: 121180-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Ecological Applications, Wiley, ( 2015-11-03)
    Type of Medium: Online Resource
    ISSN: 1051-0761
    Language: English
    Publisher: Wiley
    Publication Date: 2015
    detail.hit.zdb_id: 1074505-1
    SSG: 12
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Wiley ; 2012
    In:  Environmental Toxicology and Chemistry Vol. 31, No. 8 ( 2012-08), p. 1754-1764
    In: Environmental Toxicology and Chemistry, Wiley, Vol. 31, No. 8 ( 2012-08), p. 1754-1764
    Abstract: Macroinvertebrate species traits, such as physiological sensitivity, have successfully been introduced in trait‐based bioassessment approaches and are important predictors of species sensitivity in the field. The authors ranked macroinvertebrate species according to their physiological sensitivity to heavy metals using toxicity data from acute laboratory assays. Rankings for each of the heavy metals, Cd, Cu, Cr, Ni, Pb, Zn, and Hg, were standardized based on all available species data. Rankings for different heavy metals on the species level showed no significant difference between compounds and were reasonably well correlated pairwise (0.50  〈  r  〈  0.73). Thus, an aggregated heavy metal ranking was developed, which assigns a single physiological sensitivity value ( S metal ) to macroinvertebrate taxa. Considering the high variation, especially for higher taxonomic levels, that is, in the order level, it is recommended to use S values of the genus or species level for meaningful analyses. In terms of taxonomic ranking, crustaceans were overall the most sensitive taxonomic group, whereas insects were generally the most tolerant group. Species in the order of Cladocera were three orders of magnitude more sensitive than insects of the order of Trichoptera. By contrast, mollusks covered a wide range of sensitivities, with bivalves being on average one order of magnitude more sensitive than gastropods. The authors concluded that physiological sensitivity represents a promising trait for trait‐based risk assessment that together with other demographic and recolonization traits may help to identify the effects of heavy metal pollution in aquatic ecosystems. Environ. Toxicol. Chem. 2012; 31: 1754–1764. © 2012 SETAC
    Type of Medium: Online Resource
    ISSN: 0730-7268 , 1552-8618
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2012
    detail.hit.zdb_id: 46234-2
    detail.hit.zdb_id: 2027441-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2014
    In:  Proceedings of the National Academy of Sciences Vol. 111, No. 26 ( 2014-07), p. 9549-9554
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 111, No. 26 ( 2014-07), p. 9549-9554
    Abstract: Organic chemicals can contribute to local and regional losses of freshwater biodiversity and ecosystem services. However, their overall relevance regarding larger spatial scales remains unknown. Here, we present, to our knowledge, the first risk assessment of organic chemicals on the continental scale comprising 4,000 European monitoring sites. Organic chemicals were likely to exert acute lethal and chronic long-term effects on sensitive fish, invertebrate, or algae species in 14% and 42% of the sites, respectively. Of the 223 chemicals monitored, pesticides, tributyltin, polycyclic aromatic hydrocarbons, and brominated flame retardants were the major contributors to the chemical risk. Their presence was related to agricultural and urban areas in the upstream catchment. The risk of potential acute lethal and chronic long-term effects increased with the number of ecotoxicologically relevant chemicals analyzed at each site. As most monitoring programs considered in this study only included a subset of these chemicals, our assessment likely underestimates the actual risk. Increasing chemical risk was associated with deterioration in the quality status of fish and invertebrate communities. Our results clearly indicate that chemical pollution is a large-scale environmental problem and requires far-reaching, holistic mitigation measures to preserve and restore ecosystem health.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2014
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Wiley ; 2022
    In:  Ecological Applications Vol. 32, No. 3 ( 2022-04)
    In: Ecological Applications, Wiley, Vol. 32, No. 3 ( 2022-04)
    Abstract: Intensification of agriculture and increased insecticide use have been implicated in global losses of farmland biodiversity and ecosystem services. We hypothesized that increased insecticide applications (proportion of area treated with insecticides) in Canada's expansive agricultural landscapes are due, in part, to shifts toward more simplified landscapes. To assess this relationship, we analyzed data from the Canadian Census of Agriculture spanning 20 years including five census periods (1996–2016) and across 225 census units within the four major agricultural regions of Pacific, Prairie, Central, and Atlantic Canada. Generalized mixed effects models were used to evaluate if changes in landscape simplification — defined as the proportion of farmland in crops (cereals, oilseeds, pulses and fruit/vegetables) — alongside other farming and climatic variables, influenced insecticide applications over time. Bayesian spatial–temporal models were further used to estimate the strength of the relationship with landscape simplification over time. We found that landscape simplification increased in 89% and insecticide applications increased in 70% of the Census Division spatial units during the 1996–2016 period. Nationally, significant increases in landscape simplification were observed in the two most agriculturally intensive regions of Prairie (from 55% to 63%) and Central (from 51% to 60%) Canada. For both regions, landscape simplification was a strong and significant predictor of higher insecticide applications, even after accounting for other factors such as climate, farm economics, farm size and land use practices (e.g., area in cash crops and tillage). If current trends continue, we estimated that insecticide applications will increase another 10%–20% by 2036 as a result of landscape simplification alone. To avoid increased reliance on toxic insecticides, agri‐environmental policies need to consider that losing diverse natural habitat can increase insect pest pressure and resistance with negative environmental consequences extending beyond the field.
    Type of Medium: Online Resource
    ISSN: 1051-0761 , 1939-5582
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 1074505-1
    detail.hit.zdb_id: 2010123-5
    SSG: 12
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Elsevier BV ; 2020
    In:  Science of The Total Environment Vol. 718 ( 2020-05), p. 134765-
    In: Science of The Total Environment, Elsevier BV, Vol. 718 ( 2020-05), p. 134765-
    Type of Medium: Online Resource
    ISSN: 0048-9697
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2020
    detail.hit.zdb_id: 121506-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2012
    In:  Environmental Monitoring and Assessment Vol. 184, No. 4 ( 2012-4), p. 1823-1839
    In: Environmental Monitoring and Assessment, Springer Science and Business Media LLC, Vol. 184, No. 4 ( 2012-4), p. 1823-1839
    Type of Medium: Online Resource
    ISSN: 0167-6369 , 1573-2959
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2012
    detail.hit.zdb_id: 2012242-1
    detail.hit.zdb_id: 782621-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...