GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Scientific Publishers ; 2016
    In:  Journal of Computational and Theoretical Nanoscience Vol. 13, No. 3 ( 2016-03-01), p. 1939-1943
    In: Journal of Computational and Theoretical Nanoscience, American Scientific Publishers, Vol. 13, No. 3 ( 2016-03-01), p. 1939-1943
    Type of Medium: Online Resource
    ISSN: 1546-1955
    Language: English
    Publisher: American Scientific Publishers
    Publication Date: 2016
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Elsevier BV ; 2021
    In:  Journal of Information Security and Applications Vol. 58 ( 2021-05), p. 102792-
    In: Journal of Information Security and Applications, Elsevier BV, Vol. 58 ( 2021-05), p. 102792-
    Type of Medium: Online Resource
    ISSN: 2214-2126
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2021
    detail.hit.zdb_id: 2747575-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Microbiology Spectrum, American Society for Microbiology, Vol. 11, No. 2 ( 2023-04-13)
    Abstract: Based on the structural modification of SM21, xy12, a new pyrylium salt derivative with enhanced antifungal activities, was synthesized. The MICs (MIC 90 ) of xy12 against Candida albicans ranged from 0.125 to 0.25 μg/mL, about 2-fold lower than those of SM21. In addition, xy12 inhibited hypha and biofilm formation in C. albicans in a dose-dependent manner. A total of 3,454 differentially expressed genes and 260 differential metabolites were identified in the xy12-treated C. albicans by RNA-seq and non-targeted metabolomics. By integrating KEGG pathway enrichment analysis, we found that inhibition of oxidative phosphorylation was the important antifungal mechanism of action of xy12. Electron transport through mitochondrial respiratory complexes I to IV is the common process of oxidative phosphorylation. Compared with the sensitivity of the wild-type SC5314 to xy12, decreased sensitivities in mitochondrial complex I (CI)-deficient mutants and increased sensitivities in mitochondrial complex III- and IV-deficient mutants suggested that the antifungal effects of xy12 were dependent on CI. Consistently, xy12 exhibited antagonism with rotenone, an inhibitor of CI, and significantly inhibited the expression and activity of CI. Meanwhile, the phenotypes in the xy12-treated C. albicans were similar to those in the CI-deficient mutants, such as decreased ATP production, reduced mitochondrial membrane potential, loss of mitochondrial DNA, inability to utilize nonfermentative carbon sources, and decreased cell wall N-linked mannoproteins. Collectively, our results revealed that the pyrylium salt xy12 could constrain oxidative phosphorylation by inhibiting mitochondrial complex I in C. albicans , providing a novel lead compound for the development of mitochondria-targeted antifungal drugs. IMPORTANCE The development of new antifungal drugs is critical for solving the problem of antifungal resistance and expanding the limited variety of clinical antifungal drugs. Based on the modification of the pyrylium salt SM21, a new lead compound, xy12, was synthesized which was effective against Candida species both in vitro and in vivo . In this study, conjoined analysis of the transcriptome and metabolome elucidated the antifungal mechanism of action of xy12, which inhibited the activity of mitochondrial complex I in C. albicans . Targeting fungi-specific mitochondrial complex proteins has been reported as a promising antifungal strategy. Our study provided a new lead compound for targeting C. albicans mitochondrial complex I, which could be beneficial for discovering novel antifungal drugs.
    Type of Medium: Online Resource
    ISSN: 2165-0497
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2023
    detail.hit.zdb_id: 2807133-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Frontiers Media SA ; 2019
    In:  Frontiers in Microbiology Vol. 10 ( 2019-4-24)
    In: Frontiers in Microbiology, Frontiers Media SA, Vol. 10 ( 2019-4-24)
    Type of Medium: Online Resource
    ISSN: 1664-302X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2019
    detail.hit.zdb_id: 2587354-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  International Journal of Molecular Sciences Vol. 23, No. 20 ( 2022-10-14), p. 12307-
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 23, No. 20 ( 2022-10-14), p. 12307-
    Abstract: Candida albicans is a typical opportunistic pathogen in humans that causes serious health risks in clinical fungal infections. The construction of mutant libraries has made remarkable developments in the study of C. albicans molecular and cellular biology with the ongoing advancements of gene editing, which include the application of CRISPR-Cas9 and novel high-efficient transposon. Large-scale genetic screens and genome-wide functional analysis accelerated the investigation of new genetic regulatory mechanisms associated with the pathogenicity and resistance to environmental stress in C. albicans. More importantly, sensitivity screening based on C. albicans mutant libraries is critical for the target identification of novel antifungal compounds, which leads to the discovery of Sec7p, Tfp1p, Gwt1p, Gln4p, and Erg11p. This review summarizes the main types of C. albicans mutant libraries and interprets their applications in morphogenesis, biofilm formation, fungus–host interactions, antifungal drug resistance, and target identification.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Society for Microbiology ; 2023
    In:  Antimicrobial Agents and Chemotherapy Vol. 67, No. 6 ( 2023-06-15)
    In: Antimicrobial Agents and Chemotherapy, American Society for Microbiology, Vol. 67, No. 6 ( 2023-06-15)
    Abstract: Fungal infections, which commonly occur in immunocompromised patients, can cause high morbidity and mortality. Antifungal agents act by disrupting the cell membrane, inhibiting nucleic acid synthesis and function, or inhibiting β-1,3-glucan synthase. Because the incidences of life-threatening fungal infections and antifungal drug resistance are continuously increasing, there is an urgent need for the development of new antifungal agents with novel mechanisms of action. Recent studies have focused on mitochondrial components as potential therapeutic drug targets, owing to their important roles in fungal viability and pathogenesis. In this review, we discuss novel antifungal drugs targeting mitochondrial components and highlight the unique fungal proteins involved in the electron transport chain, which is useful for investigating selective antifungal targets. Finally, we comprehensively summarize the efficacy and safety of lead compounds in clinical and preclinical development. Although fungus-specific proteins in the mitochondrion are involved in various processes, the majority of the antifungal agents target dysfunction of mitochondria, including mitochondrial respiration disturbance, increased intracellular ATP, reactive oxygen species generation, and others. Moreover, only a few drugs are under clinical trials, necessitating further exploration of possible targets and development of effective antifungal agents. The unique chemical structures and targets of these compounds will provide valuable hints for further exploiting new antifungals.
    Type of Medium: Online Resource
    ISSN: 0066-4804 , 1098-6596
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2023
    detail.hit.zdb_id: 1496156-8
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Molecules, MDPI AG, Vol. 27, No. 14 ( 2022-07-12), p. 4450-
    Abstract: Nowadays, discovering new skeleton antifungal drugs is the direct way to address clinical fungal infections. Pyrylium salt SM21 was screened from a library containing 50,240 small molecules. Several studies about the antifungal activity and mechanism of SM21 have been reported, but the structure–activity relationship of pyrylium salts was not clear. To explore the chemical space of antifungal pyrylium salt SM21, a series of pyrylium salt derivatives were designed and synthesized. Their antifungal activity and structure-activity relationships (SAR) were investigated. Compared with SM21, most of the synthesized compounds exhibited equivalent or improved antifungal activities against Candida albicans in vitro. The synthesized compounds, such as XY10, XY13, XY14, XY16 and XY17 exhibited comparable antifungal activities against C. albicans with MIC values ranging from 0.47 to 1.0 μM. Fortunately, a compound numbered XY12 showed stronger antifungal activities and lower cytotoxicity was obtained. The MIC of compound XY12 against C. albicans was 0.24 μM, and the cytotoxicity decreased 20-fold as compared to SM21. In addition, XY12 was effective against fluconazole-resistant C. albicans and other pathogenic Candida species. More importantly, XY12 could significantly increase the survival rate of mice with a systemic C. albicans infection, which suggested the good antifungal activities of XY12 in vitro and in vivo. Our results indicated that structural modification of pyrylium salts could lead to the discovery of new antifungal drugs.
    Type of Medium: Online Resource
    ISSN: 1420-3049
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2008644-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: mBio, American Society for Microbiology, Vol. 14, No. 1 ( 2023-02-28)
    Abstract: Fluconazole (FLC) is widely used to prevent and treat invasive fungal infections. However, FLC is a fungistatic agent, allowing clinical FLC-susceptible isolates to tolerate FLC. Making FLC fungicidal in combination with adjuvants is a promising strategy to avoid FLC resistance and eliminate the persistence and recurrence of fungal infections. Here, we identify a new small molecule compound, CZ66, that can make FLC fungicidal. The mechanism of action of CZ66 is targeting the C-4 sterol methyl oxidase, encoded by the ERG251 gene, resulting in decreased content of sterols with the 14α-methyl group and ultimately eliminating FLC tolerance of Candida albicans . CZ66 most likely interacts with Erg251 through residues Glu195, Gly206, and Arg241. Establishing Erg251 as a synergistic lethal target protein of FLC should direct research to identify specific small molecule inhibitors of 14α-methylsterol synthesis and open the way to abolishing fungal FLC tolerance. IMPORTANCE Fluconazole (FLC) tolerance increases the frequency of acquired FLC resistance, and a high FLC tolerance level is associated with persistent candidemia. Multiple functional proteins, such as calcineurin, heat shock protein 90 (Hsp90), and ADP ribosylation factor, are essential for the survival of C. albicans exposed to FLC, but how these factors increase the fungicidal activity of FLC remains to be determined. In this study, we found that 14α-methylsterols replace ergosterol to allow C. albicans to survive FLC, but Erg251 inactivated by CZ66 results in loss of 14α-methylsterol synthesis and cell death of C. albicans treated with FLC. Establishing Erg251 as a synergistic lethal target protein of FLC should direct research to identify specific small molecule inhibitors of 14α-methylsterol synthesis and open the way to abolishing fungal FLC tolerance.
    Type of Medium: Online Resource
    ISSN: 2150-7511
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2023
    detail.hit.zdb_id: 2557172-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Frontiers Media SA ; 2021
    In:  Frontiers in Microbiology Vol. 12 ( 2021-12-9)
    In: Frontiers in Microbiology, Frontiers Media SA, Vol. 12 ( 2021-12-9)
    Abstract: The vacuole of Candida albicans plays a significant role in many processes including homeostasis control, cellular trafficking, dimorphic switching, and stress tolerance. Thus, understanding the factors affecting vacuole function is important for the identification of new drug targets needed in response to the world’s increasing levels of invasive infections and the growing issue of fungal drug resistance. Past studies have shown that vacuolar proton-translocating ATPases (V-ATPases) play a central role in pH homeostasis and filamentation. Vacuolar protein sorting components (VPS) regulate V-ATPases assembly and at the same time affect hyphal development. As well, vacuolar calcium exchange systems like Yvc1 and Pmc1 maintain cytosolic calcium levels while being affected by V-ATPases function. All these proteins play a role in the virulence and pathogenesis of C. albicans . This review highlights the relationships among V-ATPases, VPS, and vacuolar calcium exchange proteins while summarizing their importance in C. albicans infections.
    Type of Medium: Online Resource
    ISSN: 1664-302X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2587354-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Publishing House of Pharmaceutical Care and Research ; 2015
    In:  Pharmaceutical Care and Research Vol. 15, No. 5 ( 2015-10-31), p. 351-353
    In: Pharmaceutical Care and Research, Publishing House of Pharmaceutical Care and Research, Vol. 15, No. 5 ( 2015-10-31), p. 351-353
    Type of Medium: Online Resource
    ISSN: 1671-2838
    Uniform Title: 用Chiralpak AD-H手性色谱柱HPLC法拆分阿罗洛尔对映体
    URL: Issue
    Language: Unknown
    Publisher: Publishing House of Pharmaceutical Care and Research
    Publication Date: 2015
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...