GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Wiley ; 2023
    In:  Global Ecology and Biogeography Vol. 32, No. 7 ( 2023-07), p. 1178-1188
    In: Global Ecology and Biogeography, Wiley, Vol. 32, No. 7 ( 2023-07), p. 1178-1188
    Abstract: Species geographical range sizes play a crucial role in determining species vulnerability to extinction. Although several mechanisms affect range sizes, the number of biotic interactions and species climatic tolerance are often thought to play discernible roles, defining two dimensions of the Hutchinsonian niche. Yet, the relative importance of the trophic and the climatic niche for determining species range sizes is largely unknown. Location Central and northern Europe. Time period Present. Major taxa studied Gall‐inducing sawflies and their parasitoids. Methods We use data documenting the spatial distributions and biotic interactions of 96 herbivore species, and their 125 parasitoids, across Europe and analyse the relationship between species range size and the climatic and trophic dimensions of the niche. We then compare the observed relationships with null expectations based on species occupancy to understand whether the relationships observed are an inevitable consequence of species range size or if they contain information about the importance of each dimension of the niche on species range size. Results We find that both niche dimensions are positively correlated with species range size, with larger ranges being associated with wider climatic tolerances and larger numbers of interactions. However, diet breadth appears to more strongly limit species range size. Species with larger ranges have more interactions locally and they are also able to interact with a larger diversity of species across sites (i.e. higher β‐diversity), resulting in a larger number of interactions at continental scales. Main conclusions We show for the first time how different aspects of species diet niches are related to their range size. Our study offers new insight into the importance of biotic interactions in determining species spatial distributions, which is critical for improving understanding and predictions of species vulnerability to extinction under the current rates of global environmental change.
    Type of Medium: Online Resource
    ISSN: 1466-822X , 1466-8238
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 1479787-2
    detail.hit.zdb_id: 2021283-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: The Knowledge Engineering Review, Cambridge University Press (CUP), Vol. 26, No. 3 ( 2011-07-28), p. 303-328
    Abstract: In this paper we present our experience of representing the knowledge behind HealthAgents (HA), a distributed decision support system for brain tumour diagnosis. Our initial motivation came from the distributed nature of the information involved in the system and has been enriched by clinicians’ requirements and data access restrictions. We present in detail the steps we have taken towards building our ontology starting from knowledge acquisition to data access and reasoning. We motivate our representational choices and show our results using domain examples used by clinical partners in HA.
    Type of Medium: Online Resource
    ISSN: 0269-8889 , 1469-8005
    Language: English
    Publisher: Cambridge University Press (CUP)
    Publication Date: 2011
    detail.hit.zdb_id: 57960-9
    detail.hit.zdb_id: 1466682-0
    SSG: 24,1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 7, No. 1 ( 2016-06-16)
    Abstract: Sponges (phylum Porifera) are early-diverging metazoa renowned for establishing complex microbial symbioses. Here we present a global Porifera microbiome survey, set out to establish the ecological and evolutionary drivers of these host–microbe interactions. We show that sponges are a reservoir of exceptional microbial diversity and major contributors to the total microbial diversity of the world’s oceans. Little commonality in species composition or structure is evident across the phylum, although symbiont communities are characterized by specialists and generalists rather than opportunists. Core sponge microbiomes are stable and characterized by generalist symbionts exhibiting amensal and/or commensal interactions. Symbionts that are phylogenetically unique to sponges do not disproportionally contribute to the core microbiome, and host phylogeny impacts complexity rather than composition of the symbiont community. Our findings support a model of independent assembly and evolution in symbiont communities across the entire host phylum, with convergent forces resulting in analogous community organization and interactions.
    Type of Medium: Online Resource
    ISSN: 2041-1723
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2016
    detail.hit.zdb_id: 2553671-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Frontiers Media SA ; 2014
    In:  Frontiers in Ecology and Evolution Vol. 2 ( 2014-07-14)
    In: Frontiers in Ecology and Evolution, Frontiers Media SA, Vol. 2 ( 2014-07-14)
    Type of Medium: Online Resource
    ISSN: 2296-701X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2014
    detail.hit.zdb_id: 2745634-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Pathogens, MDPI AG, Vol. 10, No. 12 ( 2021-12-08), p. 1592-
    Abstract: Metapopulation structure plays a fundamental role in the persistence of wildlife populations. It can also drive the spread of infectious diseases and transmissible cancers such as the Tasmanian devil facial tumour disease (DFTD). While disrupting this structure can reduce disease spread, it can also impair host resilience by disrupting gene flow and colonisation dynamics. Using an individual-based metapopulation model we investigated the synergistic effects of host dispersal, disease transmission rate and inter-individual contact distance for transmission, on the spread and persistence of DFTD from local to regional scales. Disease spread, and the ensuing population declines, are synergistically determined by individuals’ dispersal, disease transmission rate and within-population mixing. Transmission rates can be magnified by high dispersal and inter-individual transmission distance. The isolation of local populations effectively reduced metapopulation-level disease prevalence but caused severe declines in metapopulation size and genetic diversity. The relative position of managed (i.e., isolated) local populations had a significant effect on disease prevalence, highlighting the importance of considering metapopulation structure when implementing metapopulation-scale disease control measures. Our findings suggest that population isolation is not an ideal management method for preventing disease spread in species inhabiting already fragmented landscapes, where genetic diversity and extinction risk are already a concern.
    Type of Medium: Online Resource
    ISSN: 2076-0817
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2695572-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2020
    In:  Microbiome Vol. 8, No. 1 ( 2020-12)
    In: Microbiome, Springer Science and Business Media LLC, Vol. 8, No. 1 ( 2020-12)
    Abstract: Viruses directly affect the most important biological processes in the ocean via their regulation of prokaryotic and eukaryotic populations. Marine sponges form stable symbiotic partnerships with a wide diversity of microorganisms and this high symbiont complexity makes them an ideal model for studying viral ecology. Here, we used morphological and molecular approaches to illuminate the diversity and function of viruses inhabiting nine sponge species from the Great Barrier Reef and seven from the Red Sea. Results Viromic sequencing revealed host-specific and site-specific patterns in the viral assemblages, with all sponge species dominated by the bacteriophage order Caudovirales but also containing variable representation from the nucleocytoplasmic large DNA virus families Mimiviridae , Marseilleviridae , Phycodnaviridae , Ascoviridae , Iridoviridae , Asfarviridae and Poxviridae . Whilst core viral functions related to replication, infection and structure were largely consistent across the sponge viromes, functional profiles varied significantly between species and sites largely due to differential representation of putative auxiliary metabolic genes (AMGs) and accessory genes, including those associated with herbicide resistance, heavy metal resistance and nylon degradation. Furthermore, putative AMGs varied with the composition and abundance of the sponge-associated microbiome. For instance, genes associated with antimicrobial activity were enriched in low microbial abundance sponges, genes associated with nitrogen metabolism were enriched in high microbial abundance sponges and genes related to cellulose biosynthesis were enriched in species that host photosynthetic symbionts. Conclusions Our results highlight the diverse functional roles that viruses can play in marine sponges and are consistent with our current understanding of sponge ecology. Differential representation of putative viral AMGs and accessory genes across sponge species illustrate the diverse suite of beneficial roles viruses can play in the functional ecology of these complex reef holobionts.
    Type of Medium: Online Resource
    ISSN: 2049-2618
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2697425-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2019
    In:  Landscape Ecology Vol. 34, No. 3 ( 2019-03-15), p. 615-626
    In: Landscape Ecology, Springer Science and Business Media LLC, Vol. 34, No. 3 ( 2019-03-15), p. 615-626
    Type of Medium: Online Resource
    ISSN: 0921-2973 , 1572-9761
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 2016200-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: mSystems, American Society for Microbiology, Vol. 6, No. 5 ( 2021-10-26)
    Abstract: Little is known regarding how community assembly and species association vary with habitat and depth. Here, we examined the assembly and association of protistan and bacterial communities across a coast-shelf-slope-basin gradient of the South China Sea using high-throughput sequencing of the V3 and V4 regions of the rRNA gene transcript. Our study revealed that homogenizing dispersal and drift exerted an influence on protistan communities comparable to that on bacterial communities. In contrast, selection and dispersal limitation exerted contrasting effects on the two microbial communities. Community assembly was governed to a greater degree by selection than by dispersal limitation in the bacterial community, and this was much lower in the protistan community. Moreover, this organismal assembly pattern was robust with habitat and depth. However, the relative importance of selection to dispersal limitation varied with habitat and depth in both communities, where horizontally it was higher offshore than nearshore and vertically it was lower in the bottom or deep chlorophyll maximum (DCM) than on the surface. The offshore possessed more microbial network complexity and more associations among microbial taxa than the nearshore, and vertically, the bottom possessed more complexity than the surface and the DCM. Moreover, temperature is strongly associated with the composition and co-occurrence of microbial communities, implying that temperature plays a dominant role in the selection of the protistan-bacterial microbiome across a coast-to-basin continuum. This study contributes to our understanding of the assembly mechanism and species association of protistan-bacterial microbiota across multiple habitats and depths. IMPORTANCE Microbial organisms play a crucial role in global nutrient cycling. Few studies have attempted to simultaneously investigate the community assembly of microeukaryotes and prokaryotes and their association patterns in oceanic waters. This is especially true regarding how they vary with habitats and depths despite the fact that they are essential for developing a more holistic understanding of marine ecosystems. This study revealed the differential actions of selection and dispersal limitation and species association across a coast-to-basin continuum on the marine protistan-bacterial microbiome. Moreover, temperature was identified as a crucial factor driving the structure and co-occurrence of protistan and bacterial communities. The results emphasize that the differences in community assembly and association patterns between nearshore and offshore of the main constituents of the ocean microbiota should be considered to understand their current and future configurations. This is especially crucial in the context of climate change, as the response of ocean microbiota to nearshore and offshore temperature changes remains unknown.
    Type of Medium: Online Resource
    ISSN: 2379-5077
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2021
    detail.hit.zdb_id: 2844333-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: mSystems, American Society for Microbiology, Vol. 8, No. 1 ( 2023-02-23)
    Abstract: Microbial communities can be structured by both deterministic and stochastic processes, but the relative importance of these processes remains unknown. The ambiguity partly arises from an inability to disentangle soil microbial processes from confounding factors, such as aboveground plant communities or anthropogenic disturbance. In this study, we characterized the relative contributions of determinism and stochasticity to assembly processes of soil bacterial communities across a large environmental gradient of undisturbed Antarctic soils. We hypothesized that harsh soils would impose a strong environmental selection on microbial communities, whereas communities in benign soils would be structured largely by dispersal. Contrary to our expectations, dispersal was the dominant assembly mechanism across the entire soil environmental gradient, including benign environments. The microbial community composition reflects slowly changing soil conditions and dispersal limitation of isolated sites. Thus, stochastic processes, as opposed to deterministic, are primary drivers of soil ecosystem assembly across space at our study site. This is especially surprising given the strong environmental constraints on soil microorganisms in one of the harshest environments on the planet, suggesting that dispersal could be a driving force in microbial community assembly in soils worldwide. IMPORTANCE Because of their diversity and ubiquity, microbes provide an excellent means to tease apart how natural communities are structured. In general, ecologists believe that stochastic assembly processes, like random drift and dispersal, should dominate in benign environments while deterministic processes, like environmental filtering, should be prevalent in harsh environments. To help resolve this debate, we analyzed microbial community composition in pristine Antarctic soils devoid of human influence or plant communities for eons. Our results demonstrate that dispersal limitation is a surprisingly potent force of community limitation throughout all soil conditions. Thus, dispersal appears to be a driving force of microbial community assembly, even in the harshest of conditions.
    Type of Medium: Online Resource
    ISSN: 2379-5077
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2023
    detail.hit.zdb_id: 2844333-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Journal of Applied Ecology, Wiley, Vol. 55, No. 5 ( 2018-09), p. 2396-2407
    Abstract: Multispecies ecological network models provide wildlife managers with tools to better understand and predict the complex effects of species removal and control on both intact and modified ecosystems. Our results show that management of the Australian arid zone can benefit from controlling invasive prey as well as invasive predators. However, invasive species control can cause unexpected outcomes on native biodiversity. This extends to other systems where dominant prey may play fundamental roles in ecosystem structure and function.
    Type of Medium: Online Resource
    ISSN: 0021-8901 , 1365-2664
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2018
    detail.hit.zdb_id: 2020408-5
    detail.hit.zdb_id: 410405-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...