GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 19, No. 24 ( 2019-12-18), p. 15483-15502
    Abstract: Abstract. The concentration of cloud condensation nuclei (CCN) is an essential parameter affecting aerosol–cloud interactions within warm clouds. Long-term CCN number concentration (NCCN) data are scarce; there are a lot more data on aerosol optical properties (AOPs). It is therefore valuable to derive parameterizations for estimating NCCN from AOP measurements. Such parameterizations have already been made, and in the present work a new parameterization is presented. The relationships between NCCN, AOPs, and size distributions were investigated based on in situ measurement data from six stations in very different environments around the world. The relationships were used for deriving a parameterization that depends on the scattering Ångström exponent (SAE), backscatter fraction (BSF), and total scattering coefficient (σsp) of PM10 particles. The analysis first showed that the dependence of NCCN on supersaturation (SS) can be described by a logarithmic fit in the range SS 〈1.1 %, without any theoretical reasoning. The relationship between NCCN and AOPs was parameterized as NCCN≈((286±46)SAE ln(SS/(0.093±0.006))(BSF − BSFmin) + (5.2±3.3))σsp, where BSFmin is the minimum BSF, in practice the 1st percentile of BSF data at a site to be analyzed. At the lowest supersaturations of each site (SS ≈0.1 %), the average bias, defined as the ratio of the AOP-derived and measured NCCN, varied from ∼0.7 to ∼1.9 at most sites except at a Himalayan site where the bias was 〉4. At SS 〉0.4 % the average bias ranged from ∼0.7 to ∼1.3 at most sites. For the marine-aerosol-dominated site Ascension Island the bias was higher, ∼1.4–1.9. In other words, at SS 〉0.4 % NCCN was estimated with an average uncertainty of approximately 30 % by using nephelometer data. The biases were mainly due to the biases in the parameterization related to the scattering Ångström exponent (SAE). The squared correlation coefficients between the AOP-derived and measured NCCN varied from ∼0.5 to ∼0.8. To study the physical explanation of the relationships between NCCN and AOPs, lognormal unimodal particle size distributions were generated and NCCN and AOPs were calculated. The simulation showed that the relationships of NCCN and AOPs are affected by the geometric mean diameter and width of the size distribution and the activation diameter. The relationships of NCCN and AOPs were similar to those of the observed ones.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2019
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 21, No. 2 ( 2021-01-28), p. 1173-1189
    Abstract: Abstract. In this study, we present results from 12 years of black carbon (BC) measurements at 14 sites around the Helsinki metropolitan area (HMA) and at one background site outside the HMA. The main local sources of BC in the HMA are traffic and residential wood combustion in fireplaces and sauna stoves. All BC measurements were conducted optically, and therefore we refer to the measured BC as equivalent BC (eBC). Measurement stations were located in different environments that represented traffic environment, detached housing area, urban background, and regional background. The measurements of eBC were conducted from 2007 through 2018; however, the times and the lengths of the time series varied at each site. The largest annual mean eBC concentrations were measured at the traffic sites (from 0.67 to 2.64 µg m−3) and the lowest at the regional background sites (from 0.16 to 0.48 µg m−3). The annual mean eBC concentrations at the detached housing and urban background sites varied from 0.64 to 0.80 µg m−3 and from 0.42 to 0.68 µg m−3, respectively. The clearest seasonal variation was observed at the detached housing sites where residential wood combustion increased the eBC concentrations during the cold season. Diurnal variation in eBC concentration in different urban environments depended clearly on the local sources that were traffic and residential wood combustion. The dependency was not as clear for the typically measured air quality parameters, which were here NOx concentration and mass concentration of particles smaller that 2.5 µm in diameter (PM2.5). At four sites which had at least a 4-year-long time series available, the eBC concentrations had statistically significant decreasing trends that varied from −10.4 % yr−1 to −5.9 % yr−1. Compared to trends determined at urban and regional background sites, the absolute trends decreased fastest at traffic sites, especially during the morning rush hour. Relative long-term trends in eBC and NOx were similar, and their concentrations decreased more rapidly than that of PM2.5. The results indicated that especially emissions from traffic have decreased in the HMA during the last decade. This shows that air pollution control, new emission standards, and a newer fleet of vehicles had an effect on air quality.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 21, No. 17 ( 2021-09-02), p. 13031-13050
    Abstract: Abstract. The scattering and backscattering enhancement factors (f(RH) and fb(RH)) describe how aerosol particle light scattering and backscattering, respectively, change with relative humidity (RH). They are important parameters in estimating direct aerosol radiative forcing (DARF). In this study we use the dataset presented in Burgos et al. (2019) that compiles f(RH) and fb(RH) measurements at three wavelengths (i.e., 450, 550 and 700 nm) performed with tandem nephelometer systems at multiple sites around the world. We present an overview of f(RH) and fb(RH) based on both long-term and campaign observations from 23 sites representing a range of aerosol types. The scattering enhancement shows a strong variability from site to site, with no clear pattern with respect to the total scattering coefficient. In general, higher f(RH) is observed at Arctic and marine sites, while lower values are found at urban and desert sites, although a consistent pattern as a function of site type is not observed. The backscattering enhancement fb(RH) is consistently lower than f(RH) at all sites, with the difference between f(RH) and fb(RH) increasing for aerosol with higher f(RH). This is consistent with Mie theory, which predicts higher enhancement of the light scattering in the forward than in the backward direction as the particle takes up water. Our results show that the scattering enhancement is higher for PM1 than PM10 at most sites, which is also supported by theory due to the change in scattering efficiency with the size parameter that relates particle size and the wavelength of incident light. At marine-influenced sites this difference is enhanced when coarse particles (likely sea salt) predominate. For most sites, f(RH) is observed to increase with increasing wavelength, except at sites with a known dust influence where the spectral dependence of f(RH) is found to be low or even exhibit the opposite pattern. The impact of RH on aerosol properties used to calculate radiative forcing (e.g., single-scattering albedo, ω0, and backscattered fraction, b) is evaluated. The single-scattering albedo generally increases with RH, while b decreases. The net effect of aerosol hygroscopicity on radiative forcing efficiency (RFE) is an increase in the absolute forcing effect (negative sign) by a factor of up to 4 at RH = 90 % compared to dry conditions (RH 〈 40 %). Because of the scarcity of scattering enhancement measurements, an attempt was made to use other more commonly available aerosol parameters (i.e., ω0 and scattering Ångström exponent, αsp) to parameterize f(RH). The majority of sites (75 %) showed a consistent trend with ω0 (higher f(RH = 85 %) for higher ω0), while no clear pattern was observed between f(RH = 85 %) and αsp. This suggests that aerosol ω0 is more promising than αsp as a surrogate for the scattering enhancement factor, although neither parameter is ideal. Nonetheless, the qualitative relationship observed between ω0 and f(RH) could serve as a constraint on global model simulations.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 22, No. 17 ( 2022-09-13), p. 11823-11843
    Abstract: Abstract. Atmospheric aerosol particle concentrations are strongly affected by various wet processes, including below and in-cloud wet scavenging and in-cloud aqueous-phase oxidation. We studied how wet scavenging and cloud processes affect particle concentrations and composition during transport to a rural boreal forest site in northern Europe. For this investigation, we employed air mass history analysis and observational data. Long-term particle number size distribution (∼15 years) and composition measurements (∼8 years) were combined with air mass trajectories with relevant variables from reanalysis data. Some such variables were rainfall rate, relative humidity, and mixing layer height. Additional observational datasets, such as temperature and trace gases, helped further evaluate wet processes along trajectories with mixed effects models. All chemical species investigated (sulfate, black carbon, and organics) exponentially decreased in particle mass concentration as a function of accumulated precipitation along the air mass route. In sulfate (SO4) aerosols, clear seasonal differences in wet removal emerged, whereas organics (Org) and equivalent black carbon (eBC) exhibited only minor differences. The removal efficiency varied slightly among the different reanalysis datasets (ERA-Interim and Global Data Assimilation System; GDAS) used for the trajectory calculations due to the difference in the average occurrence of precipitation events along the air mass trajectories between the reanalysis datasets. Aqueous-phase processes were investigated by using a proxy for air masses travelling inside clouds. We compared air masses with no experience of approximated in-cloud conditions or precipitation during the past 24 h to air masses recently inside non-precipitating clouds before they entered SMEAR II (Station for Measuring Ecosystem–Atmosphere Relations). Significant increases in SO4 mass concentration were observed for the latter air masses (recently experienced non-precipitating clouds). Our mixed effects model considered other contributing factors affecting particle mass concentrations in SMEAR II: examples were trace gases, local meteorology, and diurnal variation. This model also indicated in-cloud SO4 production. Despite the reanalysis dataset used in the trajectory calculations, aqueous-phase SO4 formation was observed. Particle number size distribution measurements revealed that most of the in-cloud SO4 formed can be attributed to particle sizes larger than 200 nm (electrical mobility diameter). Aqueous-phase secondary organic aerosol (aqSOA) formation was non-significant.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of Aerosol Science, Elsevier BV, Vol. 152 ( 2021-02), p. 105694-
    Type of Medium: Online Resource
    ISSN: 0021-8502
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2021
    detail.hit.zdb_id: 242500-2
    detail.hit.zdb_id: 1499134-2
    SSG: 13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Environment International, Elsevier BV, Vol. 185 ( 2024-03), p. 108553-
    Type of Medium: Online Resource
    ISSN: 0160-4120
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2024
    detail.hit.zdb_id: 554791-X
    detail.hit.zdb_id: 1497569-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Environment International, Elsevier BV, Vol. 129 ( 2019-08), p. 118-135
    Type of Medium: Online Resource
    ISSN: 0160-4120
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2019
    detail.hit.zdb_id: 554791-X
    detail.hit.zdb_id: 1497569-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Copernicus GmbH ; 2019
    In:  Atmospheric Chemistry and Physics Vol. 19, No. 17 ( 2019-09-09), p. 11363-11382
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 19, No. 17 ( 2019-09-09), p. 11363-11382
    Abstract: Abstract. Aerosol optical properties (AOPs) describe the ability of aerosols to scatter and absorb radiation at different wavelengths. Since aerosol particles interact with the sun's radiation, they impact the climate. Our study focuses on the long-term trends and seasonal variations of different AOPs measured at a rural boreal forest site in northern Europe. To explain the observed variations in the AOPs, we also analyzed changes in the aerosol size distribution. AOPs of particles smaller than 10 µm (PM10) and 1 µm (PM1) have been measured at SMEAR II, in southern Finland, since 2006 and 2010, respectively. For PM10 particles, the median values of the scattering and absorption coefficients, single-scattering albedo, and backscatter fraction at λ=550 nm were 9.8 Mm−1, 1.3 Mm−1, 0.88, and 0.14. The median values of scattering and absorption Ångström exponents at the wavelength ranges 450–700 and 370–950 nm were 1.88 and 0.99, respectively. We found statistically significant trends for the PM10 scattering and absorption coefficients, single-scattering albedo, and backscatter fraction, and the slopes of these trends were −0.32 Mm−1, −0.086 Mm−1, 2.2×10-3, and 1.3×10-3 per year. The tendency for the extensive AOPs to decrease correlated well with the decrease in aerosol number and volume concentrations. The tendency for the backscattering fraction and single-scattering albedo to increase indicates that the aerosol size distribution consists of fewer larger particles and that aerosols absorb less light than at the beginning of the measurements. The trends of the single-scattering albedo and backscattering fraction influenced the aerosol radiative forcing efficiency, indicating that the aerosol particles are scattering the radiation more effectively back into space.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2019
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 12, No. 1 ( 2021-09-24)
    Abstract: Aerosol particles cool the climate by scattering solar radiation and by acting as cloud condensation nuclei. Higher temperatures resulting from increased greenhouse gas levels have been suggested to lead to increased biogenic secondary organic aerosol and cloud condensation nuclei concentrations creating a negative climate feedback mechanism. Here, we present direct observations on this feedback mechanism utilizing collocated long term aerosol chemical composition measurements and remote sensing observations on aerosol and cloud properties. Summer time organic aerosol loadings showed a clear increase with temperature, with simultaneous increase in cloud condensation nuclei concentration in a boreal forest environment. Remote sensing observations revealed a change in cloud properties with an increase in cloud reflectivity in concert with increasing organic aerosol loadings in the area. The results provide direct observational evidence on the significance of this negative climate feedback mechanism.
    Type of Medium: Online Resource
    ISSN: 2041-1723
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2553671-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 20, No. 14 ( 2020-07-27), p. 8867-8908
    Abstract: Abstract. In order to assess the evolution of aerosol parameters affecting climate change, a long-term trend analysis of aerosol optical properties was performed on time series from 52 stations situated across five continents. The time series of measured scattering, backscattering and absorption coefficients as well as the derived single scattering albedo, backscattering fraction, scattering and absorption Ångström exponents covered at least 10 years and up to 40 years for some stations. The non-parametric seasonal Mann–Kendall (MK) statistical test associated with several pre-whitening methods and with Sen's slope was used as the main trend analysis method. Comparisons with general least mean square associated with autoregressive bootstrap (GLS/ARB) and with standard least mean square analysis (LMS) enabled confirmation of the detected MK statistically significant trends and the assessment of advantages and limitations of each method. Currently, scattering and backscattering coefficient trends are mostly decreasing in Europe and North America and are not statistically significant in Asia, while polar stations exhibit a mix of increasing and decreasing trends. A few increasing trends are also found at some stations in North America and Australia. Absorption coefficient time series also exhibit primarily decreasing trends. For single scattering albedo, 52 % of the sites exhibit statistically significant positive trends, mostly in Asia, eastern/northern Europe and the Arctic, 22 % of sites exhibit statistically significant negative trends, mostly in central Europe and central North America, while the remaining 26 % of sites have trends which are not statistically significant. In addition to evaluating trends for the overall time series, the evolution of the trends in sequential 10-year segments was also analyzed. For scattering and backscattering, statistically significant increasing 10-year trends are primarily found for earlier periods (10-year trends ending in 2010–2015) for polar stations and Mauna Loa. For most of the stations, the present-day statistically significant decreasing 10-year trends of the single scattering albedo were preceded by not statistically significant and statistically significant increasing 10-year trends. The effect of air pollution abatement policies in continental North America is very obvious in the 10-year trends of the scattering coefficient – there is a shift to statistically significant negative trends in 2009–2012 for all stations in the eastern and central USA. This long-term trend analysis of aerosol radiative properties with a broad spatial coverage provides insight into potential aerosol effects on climate changes.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...