GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Cancer, Wiley, Vol. 127, No. 15 ( 2021-08), p. 2666-2673
    Abstract: Aberrations of TP53, p16/RB1, and PTEN are found in 90%, 95%, and 41% of metastatic soft tissue and uterine leiomyosarcomas, respectively, with PTEN inactivation being more common in soft tissue cases. These key aberrations are generally conserved between primary and metastatic disease in a given patient.
    Type of Medium: Online Resource
    ISSN: 0008-543X , 1097-0142
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 1479932-7
    detail.hit.zdb_id: 2599218-1
    detail.hit.zdb_id: 2594979-2
    detail.hit.zdb_id: 1429-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: British Journal of Cancer, Springer Science and Business Media LLC, Vol. 127, No. 11 ( 2022-11-23), p. 2072-2085
    Type of Medium: Online Resource
    ISSN: 0007-0920 , 1532-1827
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2002452-6
    detail.hit.zdb_id: 80075-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), ( 2023-09-29)
    Abstract: Purpose: Leiomyosarcoma (LMS) is an aggressive sarcoma for which standard chemotherapies achieve response rates under 30%. There are no effective targeted therapies against LMS. Most LMS are characterized by chromosomal instability (CIN), resulting in part from TP53 and RB1 co-inactivation and DNA damage repair defects. We sought to identify therapeutic targets that could exacerbate intrinsic CIN and DNA damage in LMS, inducing lethal genotoxicity. Experimental design: We performed clinical targeted sequencing in 287 LMS and genome-wide loss-of-function screens in 3 patient-derived LMS cell lines, to identify LMS-specific dependencies. We validated candidate targets by biochemical and cell-response assays in vitro and in 7 mouse models. Results: Clinical targeted sequencing revealed a high burden of somatic copy number alterations (median fraction of the genome altered=0.62) and demonstrated homologous recombination deficiency signatures in 35% of LMS. Genome-wide shRNA screens demonstrated PRKDC (DNA-PKcs) and RPA2 essentiality, consistent with compensatory non-homologous end joining hyper-dependence. DNA-PK inhibitor combinations with unconventionally low-dose doxorubicin had synergistic activity in LMS in vitro models. Combination therapy with peposertib and low-dose doxorubicin (standard or liposomal formulations) inhibited growth of 5 of 7 LMS mouse models without toxicity. Conclusion: Combinations of DNA-PK inhibitors with unconventionally low, sensitizing, doxorubicin dosing showed synergistic effects in LMS in vitro and in vivo models, without discernable toxicity. These findings underscore the relevance of DNA damage repair alterations in LMS pathogenesis and identify dependence on NHEJ as a clinically actionable vulnerability in LMS.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 12_Supplement ( 2022-06-15), p. 5648-5648
    Abstract: Gastrointestinal stromal tumor (GIST) is the most common GI sarcoma and is generally initiated by KIT or PDGFRA mutations which are compelling therapeutic targets for tyrosine kinase inhibitors (TKI). However, the emergence of secondary mutations results in clinical resistance to available TKIs. GIST progression is driven by genomic events which incrementally target the p16-CDK4/6-RB1 and p14-TP53-RB1 pathways to create CDK4/6 and CDK2 oncogenic co-dependency. Based on limited efficacy of single-agent CDK4/6-inhibitor (CDK4/6i) therapy in GIST, we evaluated strategies of co-targeting CDK2 and CDK4/6. Multiplexed protein imaging (via Immuno-SABER) was validated for the detection of cell cycle regulator aberrations in GIST clinical samples (N=18), 7 of which were TKI-resistant, and including 3 patients in whom multiple metastases were analyzed. The impact of various CDK perturbants using CDK2i (CDK2 inhibitor-II), CDK4/6i (palbociclib or abemaciclib), and CDK2/4/6i (PF-06873600) was determined through cell proliferation and protein detection assays in GIST cell lines and murine xenografts. Mechanisms of acquired CDK2i and CDK4/6i resistance were characterized in GIST cell lines after long-term exposure. Abnormal expression/biallelic inactivation of CDKN2A/p16, RB1, and TP53 were identified in 7 (39%), 2 (11%), and 2 (11%) of 18 GISTs, respectively. Identical aberrations of p16, RB1, and TP53 were present in all metastases from 3 patients. Since 5 of 7 RB1-intact advanced GISTs had co-dysregulation of the CDK2 and CDK4/6 pathways, we evaluated co-inhibition of CDK2 and CDK4/6 in vitro and in vivo which inhibited cell proliferation (P & lt;0.01) and RB1 hyperphosphorylation. Intact RB1 predicted response to treatment, whereas RB1-deficient models were resistant. Two resistant sub-lines emerged after 11 and 14 months of palbociclib exposure: one with biallelic genomic RB1 inactivation and the other with the first known example of a cyclin D1 coding sequence fusion with oncogenic properties (CCND1::chr11.g:70025223). The CCND1 fusion deleted the cyclin D1 C-terminal Thr286 and Thr288 residues which mediate cyclin D1 proteasomal degradation, resulting in overexpression of an abnormal cyclin D1. Palbociclib-resistance properties were corroborated by lentiviral transduction of the CCND1 fusion gene into fusion-negative GIST, leiomyosarcoma, and breast cancer cells. CDK2 and CDK4/6 pathway perturbations with retained RB1 are frequent in advanced GIST and can be conserved across metastases, creating a compelling biologic rationale for therapeutic cell cycle restoration. We show that co-inhibition of CDK2 and CDK4/6 is synergistic in GIST and highlight RB1 inactivation and a novel oncogenic cyclin D1 as mechanisms of acquired CDKi resistance. Hence, combination therapies targeting CDK2 and CDK4/6 with correlative biomarkers predictive of response should be evaluated in patients with metastatic or TKI-resistant GIST. Citation Format: Inga-Marie Schaefer, Meijun Z. Lundberg, Matthew L. Hemming, Sinem K. Saka, Matthew P. Serrata, Isabel Goldaracena, Ninning Liu, Peng Yin, Joao A. Paulo, Steven Gygi, George D. Demetri, Ewa Sicinska, Adrian Mariño-Enríquez, Jason L. Hornick, Chandrajit P. Raut, Wen-Bin Ou, Jonathan A. Fletcher. Response and resistance to CDK2 and CDK4/6 inhibition in GIST [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 5648.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2023
    In:  British Journal of Cancer Vol. 129, No. 3 ( 2023-08-24), p. 531-540
    In: British Journal of Cancer, Springer Science and Business Media LLC, Vol. 129, No. 3 ( 2023-08-24), p. 531-540
    Type of Medium: Online Resource
    ISSN: 0007-0920 , 1532-1827
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2002452-6
    detail.hit.zdb_id: 80075-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Oncogenesis, Springer Science and Business Media LLC, Vol. 10, No. 5 ( 2021-05-04)
    Abstract: Endometrial stromal sarcoma (ESS) is the second most common subtype of uterine mesenchymal cancer, after leiomyosarcoma, and oncogenic fusion proteins are found in many ESS. Our previous studies demonstrated transforming properties and diagnostic relevance of the fusion oncoprotein YWHAE–NUTM2 in high-grade endometrial stromal sarcoma (HG-ESS) and showed that cyclin D1 is a diagnostic biomarker in these HG-ESS. However, YWHAE–NUTM2 mechanisms of oncogenesis and roles in cyclin D1 expression have not been characterized. In the current studies, we show YWHAE-NUTM2 complexes with both BRAF/RAF1 and YAP/TAZ in HG-ESS. These interactions are functionally relevant because YWHAE-NUTM2 knockdown in HG-ESS and other models inhibits RAF/MEK/MAPK phosphorylation, cyclin D1 expression, and cell proliferation. Further, cyclin D1 knockdown in HG-ESS dephosphorylates RB1 and inhibits proliferation. In keeping with these findings, we show that MEK and CDK4/6 inhibitors have anti-proliferative effects in HG-ESS, and combinations of these inhibitors have synergistic activity. These findings establish that YWHAE-NUTM2 regulates cyclin D1 expression and cell proliferation by dysregulating RAF/MEK/MAPK and Hippo/YAP-TAZ signaling pathways. Recent studies demonstrate Hippo/YAP-TAZ pathway aberrations in many sarcomas, but this is among the first studies to demonstrate a well-defined oncogenic mechanism as the cause of Hippo pathway dysregulation.
    Type of Medium: Online Resource
    ISSN: 2157-9024
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2674437-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 28, No. 18_Supplement ( 2022-09-15), p. A013-A013
    Abstract: Advanced GIST is characterized by genomic perturbations of key cell cycle regulators. Oncogenic activation of CDK4/6 results in RB1 inactivation and cell cycle progression. Given that single-agent CDK4/6 inhibitor (CDK4/6i) therapy failed to show clinical activity in advanced GIST, we evaluated strategies for maximizing response to therapeutic CDK4/6 inhibition. Targeted next-generation sequencing and multiplexed protein imaging were used to detect cell cycle regulator aberrations in GIST clinical samples (N=18), including 8 metastatic TKI-resistant GISTs. Multiple metastases were analyzed in 3 patients. The impact of CDK2i (CDK2 inhibitor-II), CDK4/6i (palbociclib or abemaciclib), and CDK2/4/6i (PF-06873600) was determined through cell proliferation and protein detection assays in vitro and in vivo. Mechanisms of acquired CDK2i and CDK4/6i resistance were characterized in GIST cell lines after long-term exposure. The results demonstrate recurrent genomic aberrations in cell cycle regulators causing co-activation of the CDK2 and CDK4/6 pathways. Identical aberrations of p16, RB1, and TP53 were present in all metastases from 3 patients. We show that therapeutic co-targeting of CDK2 and CDK4/6 is synergistic in GIST cell lines with intact RB1, through inhibition of RB1 hyperphosphorylation and cell proliferation (P & lt;0.01). Intact RB1 predicted response to treatment, whereas RB1-deficient models were resistant. Moreover, we identify RB1 inactivation and a novel oncogenic cyclin D1 resulting from an intragenic rearrangement (CCND1::chr11.g:70025223) as mechanisms of acquired CDK inhibitor resistance in GIST. The CCND1 rearrangement deleted the cyclin D1 C-terminal Thr286 and Thr288 residues which mediate cyclin D1 proteasomal degradation, resulting in overexpression of an abnormal cyclin D1. CDK inhibitor resistance properties were corroborated by lentiviral transduction of the CCND1 fusion gene into fusion-negative GIST, leiomyosarcoma, and breast cancer cells. These studies establish the biologic rationale for CDK2 and CDK4/6 co-inhibition as therapeutic strategy in patients with advanced GIST, including patients with metastatic GIST progressing on TKIs. In addition, these findings expand the spectrum of potential CDK inhibitor resistance mechanisms with translational potential for improving cell cycle targeted therapies in other cancer types. Citation Format: Inga-Marie Schaefer, Matthew L. Hemming, Meijun Z. Lundberg, Matthew P. Serrata, Isabel Goldaracena, Ninning Liu, Peng Yin, Joao A. Paulo, Steven P. Gygi, Suzanne George, Jeffrey A. Morgan, Monica M. Bertagnolli, Ewa T. Sicinska, Adrian Mariño-Enríquez, Jason L. Hornick, Chandrajit P. Raut, George D. Demetri, Wen-Bin Ou, Sinem K. Saka, Jonathan A. Fletcher. CDK2 and CDK4/6 inhibition in GIST: Mechanisms of response and resistance [abstract]. In: Proceedings of the AACR Special Conference: Sarcomas; 2022 May 9-12; Montreal, QC, Canada. Philadelphia (PA): AACR; Clin Cancer Res 2022;28(18_Suppl):Abstract nr A013.
    Type of Medium: Online Resource
    ISSN: 1557-3265
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...