GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Geoscientific Model Development, Copernicus GmbH, Vol. 13, No. 7 ( 2020-07-30), p. 3383-3438
    Abstract: Abstract. The Earth System Model Evaluation Tool (ESMValTool) is a community diagnostics and performance metrics tool designed to improve comprehensive and routine evaluation of Earth system models (ESMs) participating in the Coupled Model Intercomparison Project (CMIP). It has undergone rapid development since the first release in 2016 and is now a well-tested tool that provides end-to-end provenance tracking to ensure reproducibility. It consists of (1) an easy-to-install, well-documented Python package providing the core functionalities (ESMValCore) that performs common preprocessing operations and (2) a diagnostic part that includes tailored diagnostics and performance metrics for specific scientific applications. Here we describe large-scale diagnostics of the second major release of the tool that supports the evaluation of ESMs participating in CMIP Phase 6 (CMIP6). ESMValTool v2.0 includes a large collection of diagnostics and performance metrics for atmospheric, oceanic, and terrestrial variables for the mean state, trends, and variability. ESMValTool v2.0 also successfully reproduces figures from the evaluation and projections chapters of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) and incorporates updates from targeted analysis packages, such as the NCAR Climate Variability Diagnostics Package for the evaluation of modes of variability, the Thermodynamic Diagnostic Tool (TheDiaTo) to evaluate the energetics of the climate system, as well as parts of AutoAssess that contains a mix of top–down performance metrics. The tool has been fully integrated into the Earth System Grid Federation (ESGF) infrastructure at the Deutsches Klimarechenzentrum (DKRZ) to provide evaluation results from CMIP6 model simulations shortly after the output is published to the CMIP archive. A result browser has been implemented that enables advanced monitoring of the evaluation results by a broad user community at much faster timescales than what was possible in CMIP5.
    Type of Medium: Online Resource
    ISSN: 1991-9603
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2456725-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Copernicus GmbH ; 2016
    In:  Geoscientific Model Development Vol. 9, No. 6 ( 2016-06-10), p. 2115-2128
    In: Geoscientific Model Development, Copernicus GmbH, Vol. 9, No. 6 ( 2016-06-10), p. 2115-2128
    Abstract: Abstract. The present work aims at evaluating the scalability performance of a high-resolution global ocean biogeochemistry model (PELAGOS025) on massive parallel architectures and the benefits in terms of the time-to-solution reduction. PELAGOS025 is an on-line coupling between the Nucleus for the European Modelling of the Ocean (NEMO) physical ocean model and the Biogeochemical Flux Model (BFM) biogeochemical model. Both the models use a parallel domain decomposition along the horizontal dimension. The parallelisation is based on the message passing paradigm. The performance analysis has been done on two parallel architectures, an IBM BlueGene/Q at ALCF (Argonne Leadership Computing Facilities) and an IBM iDataPlex with Sandy Bridge processors at the CMCC (Euro Mediterranean Center on Climate Change). The outcome of the analysis demonstrated that the lack of scalability is due to several factors such as the I/O operations, the memory contention, the load unbalancing due to the memory structure of the BFM component and, for the BlueGene/Q, the absence of a hybrid parallelisation approach.
    Type of Medium: Online Resource
    ISSN: 1991-9603
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2016
    detail.hit.zdb_id: 2456725-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Wiley ; 2009
    In:  Environmental Toxicology and Chemistry Vol. 28, No. 4 ( 2009-04), p. 718-732
    In: Environmental Toxicology and Chemistry, Wiley, Vol. 28, No. 4 ( 2009-04), p. 718-732
    Abstract: A global uncertainty and sensitivity analysis (UA/SA) of a state‐of‐the‐art, food‐web bioaccumulation model was carried out. We used an efficient screening analysis technique to identify the subset of the most relevant input factors among the whole set of 227 model parameters. A quantitative UA/SA was then applied to this subset to rank the relevance of the parameters and to partition the variance of the model output among them by means of a nonlinear regression of the outcomes of 1,000 Monte Carlo simulations. The concentrations of four representative persistent organic pollutants (POPs) in two representative species of the coastal marine food web of the Lagoon of Venice (Italy) were taken as model outputs. The screening analysis showed that the ranking was remarkably different in relation to the species and chemical being considered. The subsequent Monte Carlo–based quantitative analysis pointed out that the relationships among some of the parameters and the model outputs were nonlinear. The nonlinear regression showed that the fraction of output variance accounted for by each parameter was strongly dependent on the range of the octanol–water partition coefficient ( K OW ) values being considered. For the less hydrophobic chemicals, the main sources of model uncertainty were the parameters related to the respiratory bioaccumulation, whereas for the more hydrophobic ones, K OW and the other parameters related to the dietary uptake explained the largest fractions of the variance of the chemical concentrations in the organisms. The analysis highlighted that efforts are still needed for reducing uncertainty of model parameters to get reliable results from the application of food web bioaccumulation models.
    Type of Medium: Online Resource
    ISSN: 0730-7268 , 1552-8618
    Language: English
    Publisher: Wiley
    Publication Date: 2009
    detail.hit.zdb_id: 2027441-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Water, MDPI AG, Vol. 14, No. 17 ( 2022-09-01), p. 2729-
    Abstract: This paper described the implementation of a forecasting system of the coupled physical and biogeochemical state of the northern Adriatic Sea and discussed the preliminary results. The forecasting system is composed of two components: the NEMO general circulation model and the BFM biogeochemical model. The BFM component includes an explicit benthic pelagic coupling providing fluxes at the sediment–water interface and the dynamic of the major benthic state variables. The system is forced by atmospheric forcing from a limited-area model and by available land-based (river runoff and nutrient load) data. The preliminary results were validated against available remote and in situ observations. The validation effort indicated a good performance of the system in defining the basin scale characteristics, while locally the forecasting model performance seemed mostly impaired by the uncertainties in the definition of the land-based forcing.
    Type of Medium: Online Resource
    ISSN: 2073-4441
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2521238-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Frontiers Media SA ; 2021
    In:  Frontiers in Climate Vol. 3 ( 2021-3-18)
    In: Frontiers in Climate, Frontiers Media SA, Vol. 3 ( 2021-3-18)
    Abstract: It is now widely recognized that in order to reach the target of limiting global warming to well below 2°C above pre-industrial levels (as the objective of the Paris agreement), cutting the carbon emissions even at an unprecedented pace will not be sufficient, but there is the need for development and implementation of active Carbon Dioxide Removal (CDR) strategies. Among the CDR strategies that currently exist, relatively few studies have assessed the mitigation capacity of ocean-based Negative Emission Technologies (NET) and the feasibility of their implementation on a larger scale to support efficient implementation strategies of CDR. This study investigates the case of ocean alkalinization, which has the additional potential of contrasting the ongoing acidification resulting from increased uptake of atmospheric CO 2 by the seas. More specifically, we present an analysis of marine alkalinization applied to the Mediterranean Sea taking into consideration the regional characteristics of the basin. Rather than using idealized spatially homogenous scenarios of alkalinization as done in previous studies, which are practically hard to implement, we use a set of numerical simulations of alkalinization based on current shipping routes to quantitatively assess the alkalinization efficiency via a coupled physical-biogeochemical model (NEMO-BFM) for the Mediterranean Sea at 1/16° horizontal resolution (~6 km) under an RCP4.5 scenario over the next decades. Simulations suggest the potential of nearly doubling the carbon-dioxide uptake rate of the Mediterranean Sea after 30 years of alkalinization, and of neutralizing the mean surface acidification trend of the baseline scenario without alkalinization over the same time span. These levels are achieved via two different alkalinization strategies that are technically feasible using the current network of cargo and tanker ships: a first approach applying annual discharge of 200 Mt Ca(OH) 2 constant over the alkalinization period and a second approach with gradually increasing discharge proportional to the surface pH trend of the baseline scenario, reaching similar amounts of annual discharge by the end of the alkalinization period. We demonstrate that the latter approach allows to stabilize the mean surface pH at present day values and substantially increase the potential to counteract acidification relative to the alkalinity added, while the carbon uptake efficiency (mole of CO 2 absorbed by the ocean per mole of alkalinity added) is only marginally reduced. Nevertheless, significant local alterations of the surface pH persist, calling for an investigation of the physiological and ecological implications of the extent of these alterations to the carbonate system in the short to medium term in order to support a safe, sustainable application of this CDR implementation.
    Type of Medium: Online Resource
    ISSN: 2624-9553
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2986708-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Science of The Total Environment, Elsevier BV, Vol. 670 ( 2019-06), p. 379-397
    Type of Medium: Online Resource
    ISSN: 0048-9697
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2019
    detail.hit.zdb_id: 1498726-0
    detail.hit.zdb_id: 121506-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Frontiers Media SA ; 2023
    In:  Frontiers in Microbiology Vol. 14 ( 2023-2-16)
    In: Frontiers in Microbiology, Frontiers Media SA, Vol. 14 ( 2023-2-16)
    Abstract: Marine heterotrophic Bacteria (or referred to as bacteria) play an important role in the ocean carbon cycle by utilizing, respiring, and remineralizing organic matter exported from the surface to deep ocean. Here, we investigate the responses of bacteria to climate change using a three-dimensional coupled ocean biogeochemical model with explicit bacterial dynamics as part of the Coupled Model Intercomparison Project Phase 6. First, we assess the credibility of the century-scale projections (2015–2099) of bacterial carbon stock and rates in the upper 100 m layer using skill scores and compilations of the measurements for the contemporary period (1988–2011). Second, we demonstrate that across different climate scenarios, the simulated bacterial biomass trends (2076–2099) are sensitive to the regional trends in temperature and organic carbon stocks. Bacterial carbon biomass declines by 5–10% globally, while it increases by 3–5% in the Southern Ocean where semi-labile dissolved organic carbon (DOC) stocks are relatively low and particle-attached bacteria dominate. While a full analysis of drivers underpinning the simulated changes in all bacterial stock and rates is not possible due to data constraints, we investigate the mechanisms of the changes in DOC uptake rates of free-living bacteria using the first-order Taylor decomposition. The results demonstrate that the increase in semi-labile DOC stocks drives the increase in DOC uptake rates in the Southern Ocean, while the increase in temperature drives the increase in DOC uptake rates in the northern high and low latitudes. Our study provides a systematic analysis of bacteria at global scale and a critical step toward a better understanding of how bacteria affect the functioning of the biological carbon pump and partitioning of organic carbon pools between surface and deep layers.
    Type of Medium: Online Resource
    ISSN: 1664-302X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2587354-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: PLoS ONE, Public Library of Science (PLoS), Vol. 6, No. 12 ( 2011-12-14), p. e28920-
    Type of Medium: Online Resource
    ISSN: 1932-6203
    Language: English
    Publisher: Public Library of Science (PLoS)
    Publication Date: 2011
    detail.hit.zdb_id: 2267670-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: SSRN Electronic Journal, Elsevier BV
    Type of Medium: Online Resource
    ISSN: 1556-5068
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2013
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Elsevier BV ; 2015
    In:  Deep Sea Research Part I: Oceanographic Research Papers Vol. 98 ( 2015-04), p. 21-30
    In: Deep Sea Research Part I: Oceanographic Research Papers, Elsevier BV, Vol. 98 ( 2015-04), p. 21-30
    Type of Medium: Online Resource
    ISSN: 0967-0637
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2015
    detail.hit.zdb_id: 1500309-7
    detail.hit.zdb_id: 1146810-5
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...