GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Material
Language
Subjects(RVK)
  • 1
    In: Virology, Elsevier BV, Vol. 207, No. 2 ( 1995-03), p. 475-485
    Type of Medium: Online Resource
    ISSN: 0042-6822
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 1995
    detail.hit.zdb_id: 1471925-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Virology, American Society for Microbiology, Vol. 89, No. 6 ( 2015-03-15), p. 3275-3284
    Abstract: Hepatitis B virus (HBV) capsid proteins (Cps) assemble around the pregenomic RNA (pgRNA) and viral reverse transcriptase (P). pgRNA is then reverse transcribed to double-stranded DNA (dsDNA) within the capsid. The Cp assembly domain, which forms the shell of the capsid, regulates assembly kinetics and capsid stability. The Cp, via its nucleic acid-binding C-terminal domain, also affects nucleic acid organization. We hypothesize that the structure of the capsid may also have a direct effect on nucleic acid processing. Using structure-guided design, we made a series of mutations at the interface between Cp subunits that change capsid assembly kinetics and thermodynamics in a predictable manner. Assembly in cell culture mirrored in vitro activity. However, all of these mutations led to defects in pgRNA packaging. The amount of first-strand DNA synthesized was roughly proportional to the amount of RNA packaged. However, the synthesis of second-strand DNA, which requires two template switches, was not supported by any of the substitutions. These data demonstrate that the HBV capsid is far more than an inert container, as mutations in the assembly domain, distant from packaged nucleic acid, affect reverse transcription. We suggest that capsid molecular motion plays a role in regulating genome replication. IMPORTANCE The hepatitis B virus (HBV) capsid plays a central role in the virus life cycle and has been studied as a potential antiviral target. The capsid protein (Cp) packages the viral pregenomic RNA (pgRNA) and polymerase to form the HBV core. The role of the capsid in subsequent nucleic acid metabolism is unknown. Here, guided by the structure of the capsid with bound antiviral molecules, we designed Cp mutants that enhanced or attenuated the assembly of purified Cp in vitro . In cell culture, assembly of mutants was consistent with their in vitro biophysical properties. However, all of these mutations inhibited HBV replication. Specifically, changing the biophysical chemistry of Cp caused defects in pgRNA packaging and synthesis of the second strand of DNA. These results suggest that the HBV Cp assembly domain potentially regulates reverse transcription, extending the activities of the capsid protein beyond its presumed role as an inert compartment.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2015
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Society for Microbiology ; 2004
    In:  Journal of Virology Vol. 78, No. 16 ( 2004-08-15), p. 8780-8787
    In: Journal of Virology, American Society for Microbiology, Vol. 78, No. 16 ( 2004-08-15), p. 8780-8787
    Abstract: Packaging of hepadnavirus pregenomic RNA (pgRNA) into capsids, or encapsidation, requires several viral components. The viral polymerase (P) and the capsid subunit (C) are necessary for pgRNA encapsidation. Previous studies of duck hepatitis B virus (DHBV) indicated that two cis- acting sequences on pgRNA are required for encapsidation: ε, which is near the 5′ end of pgRNA, and region II, located near the middle of pgRNA. Later studies suggested that the intervening sequence between these two elements may also make a contribution. It has been demonstrated for DHBV that ε interacts with P to facilitate encapsidation, but it is not known how other cis- acting sequences contribute to encapsidation. We analyzed chimeras of DHBV and a related virus, heron hepatitis B virus (HHBV), to gain insight into the interactions between the various viral components during pgRNA encapsidation. We learned that having ε and P derived from the same virus was not sufficient for high levels of encapsidation, implying that other viral interactions contribute to encapsidation. Chimeric analysis showed that a large sequence containing region II may interact with P and/or C for efficient encapsidation. Further analysis demonstrated that possibly an RNA-RNA interaction between the intervening sequence and region II facilitates pgRNA encapsidation. Together, these results identify functional interactions among various viral components that contribute to pgRNA encapsidation.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2004
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Society for Microbiology ; 2007
    In:  Journal of Virology Vol. 81, No. 12 ( 2007-06-15), p. 6207-6215
    In: Journal of Virology, American Society for Microbiology, Vol. 81, No. 12 ( 2007-06-15), p. 6207-6215
    Abstract: Hepadnaviruses utilize two template switches (primer translocation and circularization) during synthesis of plus-strand DNA to generate a relaxed-circular (RC) DNA genome. In duck hepatitis B virus (DHBV) three cis -acting sequences, 3E, M, and 5E, contribute to both template switches through base pairing, 3E with the 3′ portion of M and 5E with the 5′ portion of M. Human hepatitis B virus (HBV) also contains multiple cis -acting sequences that contribute to the accumulation of RC DNA, but the mechanisms through which these sequences contribute were previously unknown. Three of the HBV cis -acting sequences (h3E, hM, and h5E) occupy positions equivalent to those of the DHBV 3E, M, and 5E. We present evidence that h3E and hM contribute to the synthesis of RC DNA through base pairing during both primer translocation and circularization. Mutations that disrupt predicted base pairing inhibit both template switches while mutations that restore the predicted base pairing restore function. Therefore, the h3E-hM base pairing appears to be a conserved requirement for template switching during plus-strand DNA synthesis of HBV and DHBV. Also, we show that base pairing is not sufficient to explain the mechanism of h3E and hM, as mutating sequences adjacent to the base pairing regions inhibited both template switches. Finally, we did not identify predicted base pairing between h5E and the hM region, indicating a possible difference between HBV and DHBV. The significance of these similarities and differences between HBV and DHBV will be discussed.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2007
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Society for Microbiology ; 2003
    In:  Journal of Virology Vol. 77, No. 23 ( 2003-12), p. 12412-12420
    In: Journal of Virology, American Society for Microbiology, Vol. 77, No. 23 ( 2003-12), p. 12412-12420
    Abstract: Two template switches are necessary during plus-strand DNA synthesis of the relaxed circular (RC) form of the hepadnavirus genome. The 3′ end of the minus-strand DNA makes important contributions to both of these template switches. It acts as the donor site for the first template switch, called primer translocation, and subsequently acts as the acceptor site for the second template switch, termed circularization. Circularization involves transfer of the nascent 3′ end of the plus strand from the 5′ end of the minus-strand DNA to the 3′ end, where further elongation can lead to production of RC DNA. In duck hepatitis B virus (DHBV), a small terminal redundancy (5′r and 3′r) on the ends of the minus-strand DNA has been shown to be important, but not sufficient, for circularization. We investigated what contribution, if any, the base composition of the terminal redundancy made to the circularization process. Using a genetic approach, we found a strong positive correlation between the fraction of A and T residues within the terminal redundancy and the efficiency of the circularization process in those variants. Additionally, we found that the level of in situ priming increases, at the expense of primer translocation, as the fraction of A and T residues in the 3′r decreases. Thus, a terminal redundancy rich in A and T residues is important for both plus-strand template switches in DHBV.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2003
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2003
    In:  Proceedings of the National Academy of Sciences Vol. 100, No. 4 ( 2003-02-18), p. 1984-1989
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 100, No. 4 ( 2003-02-18), p. 1984-1989
    Abstract: Synthesis of the relaxed-circular (RC) DNA genome of hepadnaviruses requires two template switches during plus-strand DNA synthesis: primer translocation and circularization. Although primer translocation and circularization use different donor and acceptor sequences, and are distinct temporally, they share the common theme of switching from one end of the minus-strand template to the other end. Studies of duck hepatitis B virus have indicated that, in addition to the donor and acceptor sequences, three other cis-acting sequences, named 3E, M, and 5E, are required for the synthesis of RC DNA by contributing to primer translocation and circularization. The mechanism by which 3E, M, and 5E act was not known. We present evidence that these sequences function by base pairing with each other within the minus-strand template. 3E base-pairs with one portion of M (M3) and 5E base-pairs with an adjacent portion of M (M5). We found that disrupting base pairing between 3E and M3 and between 5E and M5 inhibited primer translocation and circularization. More importantly, restoring base pairing with mutant sequences restored the production of RC DNA. These results are consistent with the model that, within duck hepatitis B virus capsids, the ends of the minus-strand template are juxtaposed via base pairing to facilitate the two template switches during plus-strand DNA synthesis.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2003
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Society for Microbiology ; 2011
    In:  Journal of Virology Vol. 85, No. 3 ( 2011-02), p. 1298-1309
    In: Journal of Virology, American Society for Microbiology, Vol. 85, No. 3 ( 2011-02), p. 1298-1309
    Abstract: The carboxy-terminal domain (CTD) of the core protein of hepatitis B virus is not necessary for capsid assembly. However, the CTD does contribute to encapsidation of pregenomic RNA (pgRNA). The contribution of the CTD to DNA synthesis is less clear. This is the case because some mutations within the CTD increase the proportion of spliced RNA to pgRNA that are encapsidated and reverse transcribed. The CTD contains four clusters of consecutive arginine residues. The contributions of the individual arginine clusters to genome replication are unknown. We analyzed core protein variants in which the individual arginine clusters were substituted with either alanine or lysine residues. We developed assays to analyze these variants at specific steps throughout genome replication. We used a replication template that was not spliced in order to study the replication of only pgRNA. We found that alanine substitutions caused defects at both early and late steps in genome replication. Lysine substitutions also caused defects, but primarily during later steps. These findings demonstrate that the CTD contributes to DNA synthesis pleiotropically and that preserving the charge within the CTD is not sufficient to preserve function.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2011
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 1989
    In:  Nature Vol. 340, No. 6232 ( 1989-8), p. 397-400
    In: Nature, Springer Science and Business Media LLC, Vol. 340, No. 6232 ( 1989-8), p. 397-400
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 1989
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: DNA, Mary Ann Liebert Inc, Vol. 5, No. 3 ( 1986-06), p. 239-245
    Type of Medium: Online Resource
    ISSN: 0198-0238
    RVK:
    Language: English
    Publisher: Mary Ann Liebert Inc
    Publication Date: 1986
    detail.hit.zdb_id: 2026832-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Society for Microbiology ; 2003
    In:  Journal of Virology Vol. 77, No. 23 ( 2003-12), p. 12401-12411
    In: Journal of Virology, American Society for Microbiology, Vol. 77, No. 23 ( 2003-12), p. 12401-12411
    Abstract: Two template switches are necessary during plus-strand DNA synthesis of the relaxed circular (RC) form of the hepadnavirus genome. The 3′ end of the minus-strand DNA makes important contributions to both of these template switches. It acts as the donor site for the first template switch, called primer translocation, and subsequently acts as the acceptor site for the second template switch, termed circularization. A small DNA hairpin has been shown to form near the 3′ end of the minus-strand DNA overlapping the direct repeat 1 in avihepadnaviruses. Previously we showed that this hairpin is involved in discriminating between two mutually exclusive pathways for the initiation of plus-strand DNA synthesis. In its absence, the pathway leading to production of duplex linear DNA is favored, whereas primer translocation is favored in its presence, apparently through the inhibition of in situ priming. Circularization involves transfer of the nascent plus strand from the 5′ end of the minus-strand DNA to the 3′ end, where further elongation can lead to production of RC DNA. Using both genetic and biochemical approaches, we now have found that the small DNA hairpin in the duck hepatitis B virus (DHBV) makes a positive contribution to circularization. The contribution appears to be through its impact on the conformation of the acceptor site. We also identified a unique DHBV variant that can synthesize RC DNA well in the absence of the hairpin. The behavior of this variant could serve as a model for understanding the mammalian hepadnaviruses, in which an analogous hairpin does not appear to exist.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2003
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...