GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Neurology Genetics, Ovid Technologies (Wolters Kluwer Health), Vol. 8, No. 3 ( 2022-06), p. e685-
    Abstract: Genetic testing has become an integral part of health care, allowing the confirmation of thousands of hereditary diseases, including neuromuscular disorders (NMDs). The reported average prevalence of individual inherited NMDs is 3.7–4.99 per 10,000. This number varies greatly in the selected populations after applying population-wide studies. The aim of this study was to evaluate the effect of genetic analysis as the first-tier test in patients with NMD and to calculate the disease prevalence and allelic frequencies for reoccurring genetic variants. Methods Patients with NMD from Latvia with molecular tests confirming their diagnosis in 2008–2020 were included in this retrospective study. Results Diagnosis was confirmed in 153 unique cases of all persons tested. Next-generation sequencing resulted in a detection rate of 37%. Two of the most common childhood-onset NMDs in our population were spinal muscular atrophy and dystrophinopathies, with a birth prevalence of 1.01 per 10,000 newborns and 2.08 per 10,000 (male newborn population), respectively. The calculated point prevalence was 0.079 per 10,000 for facioscapulohumeral muscular dystrophy type 1, 0.078 per 10,000 for limb-girdle muscular dystrophy, 0.073 per 10,000 for nondystrophic congenital myotonia, 0.052 per 10,000 for spinobulbar muscular atrophy, and 0.047 per 10,000 for type 1 myotonic dystrophy. Discussion DNA diagnostics is a successful approach. The carrier frequencies of the common CAPN3 , FKRP , SPG11 , and HINT1 gene variants as well as that of the SMN1 gene exon 7 deletion in the population of Latvia are comparable with data from Europe. The carrier frequency of the CLCN1 gene variant c.2680C 〉 T p.(Arg894Ter) is 2.11%, and consequently, congenital myotonia is the most frequent NMD in our population.
    Type of Medium: Online Resource
    ISSN: 2376-7839
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2022
    detail.hit.zdb_id: 2818607-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Genetics Vol. 13 ( 2022-2-24)
    In: Frontiers in Genetics, Frontiers Media SA, Vol. 13 ( 2022-2-24)
    Abstract: Craniofacial morphogenesis is highly complex, as is the anatomical region involved. Errors during this process, resulting in orofacial clefts, occur in more than 400 genetic syndromes. Some cases of cleft lip and/or palate (CLP) are caused by mutations in single genes; however, complex interactions between genetic and environmental factors are considered to be responsible for the majority of non-syndromic CLP development. The aim of the current study was to identify genetic risk factors in patients with isolated cleft palate (CP) by whole genome sequencing. Patients with isolated CP ( n = 30) recruited from the Riga Cleft Lip and Palate Centre, Institute of Stomatology, Riga, were analyzed by whole genome sequencing. Pathogenic or likely pathogenic variants were discovered in genes associated with CP ( TBX22 , COL2A1 , FBN1 , PCGF2 , and KMT2D ) in five patients; hence, rare disease variants were identified in 17% of patients with non-syndromic isolated CP. Our results were relevant to routine genetic counselling practice and genetic testing recommendations. Based on our data, we propose that all newborns with orofacial clefts should be offered genetic testing, at least for a panel of known CLP genes. Only if the results are negative and there is no suggestive family history or additional clinical symptoms (which would support additional exome or genome-wide investigation), should multifactorial empiric recurrence risk prediction tools be applied for families.
    Type of Medium: Online Resource
    ISSN: 1664-8021
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2606823-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Current Issues in Molecular Biology, MDPI AG, Vol. 45, No. 3 ( 2023-02-22), p. 1794-1809
    Abstract: Mitochondria are involved in many vital functions in living cells, including the synthesis of ATP by oxidative phosphorylation (OXPHOS) and regulation of nuclear gene expression through retrograde signaling. Leigh syndrome is a heterogeneous neurological disorder resulting from an isolated complex I deficiency that causes damage to mitochondrial energy production. The pathogenic mitochondrial DNA (mtDNA) variant m.13513G 〉 A has been associated with Leigh syndrome. The present study investigated the effects of this mtDNA variant on the OXPHOS system and cell retrograde signaling. Transmitochondrial cytoplasmic hybrid (cybrid) cell lines harboring 50% and 70% of the m.13513G 〉 A variant were generated and tested along with wild-type (WT) cells. The functionality of the OXPHOS system was evaluated by spectrophotometric assessment of enzyme activity and high-resolution respirometry. Nuclear gene expression was investigated by RNA sequencing and droplet digital PCR. Increasing levels of heteroplasmy were associated with reduced OXPHOS system complex I, IV, and I + III activities, and high-resolution respirometry also showed a complex I defect. Profound changes in transcription levels of nuclear genes were observed in the cell lines harboring the pathogenic mtDNA variant, indicating the physiological processes associated with defective mitochondria.
    Type of Medium: Online Resource
    ISSN: 1467-3045
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2090836-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...