GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Cancer Research and Clinical Oncology, Springer Science and Business Media LLC
    Abstract: Hepatocellular carcinoma (HCC) with high incidence and mortality is one of the most common malignant cancers worldwide. Increasing evidence has reported that N6-methyladenosine (m 6 A) modification has been considered as a major contribution to the occurrence and development of tumors. Method In our study, we comprehensively analyzed the connection between m 6 A regulatory factors and cancer stem cells (CSCs) of HCC to establish a clinical tool for predicting its outcome. First, we concluded that the expression level of m 6 A regulatory factors was related with the stemness of hepatocellular carcinoma. Subsequently, we gained a ten hub regulatory factors that were associated with prognosis of hepatocellular carcinoma by overall survival (OS) analysis using ICGC and TCGA datasets, and these regulatory factors included YTHDF1, IGF2BP1, METTL3, IGF2BP3, HNRNPA2B1, IGF2BP2, RBM15B, HNRNPC, RBMX, and LRPPR. Next, we found that these ten hub m 6 A regulatory factors were highly expressed in CSCs, and CSCs related pathways were also enriched by the gene set variation analysis (GSVA). Then, correlation, consensus clustering and PCA analysis were performed to reveal potential therapeutic benefits of HCC. Moreover, univariate Cox regression (UNICOX), LASSON and multivariate Cox regression (MULTICOX) analyses were adopted to establish HCC prognosis prediction signature. Results Four regulatory factors RBM15B, LRPPRC, IGF2BP1, and IGF2BP3 were picked as valuable prognostic indicators. Conclusion In summary, these ten hub regulatory factors would be useful therapeutic targets for HCC treatment, and RBM15B/LRPPRC/IGF2BP1/IGF2BP3 prognostic indicators can be used to guide therapy for HCC patients.
    Type of Medium: Online Resource
    ISSN: 0171-5216 , 1432-1335
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 1459285-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Stem Cell Research & Therapy, Springer Science and Business Media LLC, Vol. 13, No. 1 ( 2022-12)
    Abstract: Human pluripotent stem cells (hPSCs) have great potential in applications for regenerative medicine and drug development. However, 3D suspension culture systems for clinical-grade hPSC large-scale production have been a major challenge. Accumulating evidence has demonstrated that the addition of dextran sulfate (DS) could prevent excessive adhesion of hPSCs from forming larger aggregates in 3D suspension culture. However, the signaling and molecular mechanisms underlying this phenomenon remain elusive. Methods By using a cell aggregate culture assay and separating big and small aggregates in suspension culture systems, the potential mechanism and downstream target genes of DS were investigated by mRNA sequence analysis, qRT-PCR validation, colony formation assay, and interference assay. Results Since cellular adhesion molecules (CAMs) play important roles in hPSC adhesion and aggregation, we assumed that DS might prevent excess adhesion through affecting the expression of CAMs in hPSCs. As expected, after DS treatment, we found that the expression of CAMs was significantly down-regulated, especially E-cadherin (E-cad) and intercellular adhesion molecule 1 (ICAM1), two highly expressed CAMs in hPSCs. The role of E-cad in the adhesion of hPSCs has been widely investigated, but the function of ICAM1 in hPSCs is hardly understood. In the present study, we demonstrated that ICAM1 exhibited the capacity to promote the adhesion in hPSCs, and this adhesion was suppressed by the treatment with DS. Furthermore, transcriptomic analysis of RNA-seq revealed that DS treatment up-regulated genes related to Wnt signaling resulting in the activation of Wnt signaling in which SLUG, TWIST, and MMP3/7 were highly expressed, and further inhibited the expression of E-cad. Conclusion Our results demonstrated that DS played an important role in controlling the size of hPSC aggregates in 3D suspension culture by inhibiting the expression of ICAM1 coupled with the down-regulation of E-cad through the activation of the Wnt signaling pathway. These results represent a significant step toward developing the expansion of hPSCs under 3D suspension condition in large-scale cultures.
    Type of Medium: Online Resource
    ISSN: 1757-6512
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2548671-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Optica Publishing Group ; 2021
    In:  Optics Express Vol. 29, No. 21 ( 2021-10-11), p. 33558-
    In: Optics Express, Optica Publishing Group, Vol. 29, No. 21 ( 2021-10-11), p. 33558-
    Abstract: Optical cryptanalysis based on deep learning (DL) has grabbed more and more attention. However, most DL methods are purely data-driven methods, lacking relevant physical priors, resulting in generalization capabilities restrained and limiting practical applications. In this paper, we demonstrate that the double-random phase encoding (DRPE)-based optical cryptosystems are susceptible to preprocessing ciphertext-only attack (pCOA) based on DL strategies, which can achieve high prediction fidelity for complex targets by using only one random phase mask (RPM) for training. After preprocessing the ciphertext information to procure substantial intrinsic information, the physical knowledge DL method based on physical priors is exploited to further learn the statistical invariants in different ciphertexts. As a result, the generalization ability has been significantly improved by increasing the number of training RPMs. This method also breaks the image size limitation of the traditional COA method. Optical experiments demonstrate the feasibility and the effectiveness of the proposed learning-based pCOA method.
    Type of Medium: Online Resource
    ISSN: 1094-4087
    Language: English
    Publisher: Optica Publishing Group
    Publication Date: 2021
    detail.hit.zdb_id: 1491859-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Optica Publishing Group ; 2022
    In:  Optics Letters Vol. 47, No. 19 ( 2022-10-01), p. 5056-
    In: Optics Letters, Optica Publishing Group, Vol. 47, No. 19 ( 2022-10-01), p. 5056-
    Abstract: In recent years, low-cost high-quality non-line-of-sight (NLOS) imaging by a passive light source has been a significant research dimension. Here, we report a new, to the best of our knowledge, reconstruction method for the well-known “occluder-aided” NLOS imaging configuration based on an untrained deep decoder network. Using the interaction between the neural network and the physical forward model, the network weights can be automatically updated without the need for training data. Completion of the optimization process facilitates high-quality reconstructions of hidden scenes from photographs of a blank wall under high ambient light conditions. Simulations and experiments show the superior performance of the proposed method in terms of the details and the robustness of the reconstructed images. Our method will further promote the practical application of NLOS imaging in real scenes.
    Type of Medium: Online Resource
    ISSN: 0146-9592 , 1539-4794
    Language: English
    Publisher: Optica Publishing Group
    Publication Date: 2022
    detail.hit.zdb_id: 243290-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Advanced Healthcare Materials, Wiley
    Abstract: Mesenchymal stem cell (MSC) therapies have been brought forward as a promising treatment modality for cutaneous wound healing. However, current approaches for stem cell delivery have many drawbacks, such as lack of targetability and cell loss, leading to poor efficacy of stem cell therapy. To overcome these problems, in the present study, an in situ cell electrospinning system is developed as an attractive approach for stem cell delivery. MSCs have a high cell viability of over 90% even with a high applied voltage of 15 kV post‐cell electrospinning process. In addition, cell electrospinning does not show any negative effect on the surface marker expression and differentiation capacity of MSCs. In vivo studies demonstrate that in situ cell electrospinning treatment can promote cutaneous wound healing through direct deposition of bioactive fish gelatin fibers and MSCs onto wound sites, leading to a synergic therapeutic effect. The approach enhances extracellular matrix remodeling by increasing collagen deposition, promotes angiogenesis by increasing the expression of vascular endothelial growth factor (VEGF) and forming small blood vessels, and dramatically reduces the expression of interleukin‐6 (IL‐6) during wound healing. The use of in situ cell electrospinning system potentially provides a rapid, no touch, personalized treatment for cutaneous wound healing.
    Type of Medium: Online Resource
    ISSN: 2192-2640 , 2192-2659
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 2645585-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Biomaterials Science, Royal Society of Chemistry (RSC), Vol. 9, No. 18 ( 2021), p. 6064-6085
    Abstract: Hepatocellular carcinoma (HCC), as a well-vascularized tumor, has attracted increasing attention in antiangiogenic therapies. Notably, emerging studies reveal that the long-term administration of antiangiogenic drugs induces hypoxia in tumors. Pericytes, which play a vital role in vascular stabilization and maturation, have been documented to be associated with antiangiogenic drug-induced tumor hypoxia. However, the role of antiangiogenic agents in regulating pericyte behavior still remains elusive. In this study, by using immunostaining analysis, we first demonstrated that tumors obtained from HCC patients were highly angiogenic, in which vessels were irregularly covered by pericytes. Therefore, we established a new 3D model of tumor-driven angiogenesis by culturing endothelial cells, pericytes, cancer stem cells (CSCs) and mesenchymal stem cells (MSCs) with microcarriers in order to investigate the effects and mechanisms exerted by antiangiogenic agents on pericyte recruitment during tumor angiogenesis. Interestingly, microcarriers, as supporting matrices, enhanced the interactions between tumor cells and the extracellular matrix (ECM), promoted malignancy of tumor cells and increased tumor angiogenesis within the 3D model, as determined by qRT-PCR and immunostaining. More importantly, we showed that zoledronic acid (ZA) reversed the inhibited pericyte recruitment, which was induced by sorafenib (Sora) treatment, through fostering the expression and activation of ErbB1/ErbB2 and PDGFR-β in pericytes, in both an in vitro 3D model and an in vivo xenograft HCC mouse model. Hence, our model provides a more pathophysiologically relevant platform for the assessment of therapeutic effects of antiangiogenic compounds and identification of novel pharmacological targets, which might efficiently improve the benefits of antiangiogenic treatment for HCC patients.
    Type of Medium: Online Resource
    ISSN: 2047-4830 , 2047-4849
    Language: English
    Publisher: Royal Society of Chemistry (RSC)
    Publication Date: 2021
    detail.hit.zdb_id: 2693928-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Royal Society of Chemistry (RSC) ; 2014
    In:  New Journal of Chemistry Vol. 38, No. 9 ( 2014-08-01), p. 4045-
    In: New Journal of Chemistry, Royal Society of Chemistry (RSC), Vol. 38, No. 9 ( 2014-08-01), p. 4045-
    Type of Medium: Online Resource
    ISSN: 1144-0546 , 1369-9261
    Language: English
    Publisher: Royal Society of Chemistry (RSC)
    Publication Date: 2014
    detail.hit.zdb_id: 1472933-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Optica Publishing Group ; 2022
    In:  Optics Express Vol. 30, No. 11 ( 2022-05-23), p. 18364-
    In: Optics Express, Optica Publishing Group, Vol. 30, No. 11 ( 2022-05-23), p. 18364-
    Abstract: Computational ghost imaging (CGI), in which an image is retrieved from the known speckle patterns that illuminate the object and the total transmitted intensity, has shown great advances because of its advantages and potential applications at all wavelengths. However, high-quality and less time-consuming imaging has been proven challenging especially in color CGI. In this paper, we will present a new color CGI method that can achieve the reconstruction of high-fidelity images at a relatively low sampling rate (0.0625) by using plug-and-play generalized alternating projection algorithm (PnP-GAP). The spatial distribution and color information of the object are encoded into a one-dimensional light intensity sequence simultaneously by combining randomly distributed speckle patterns and a Bayer color mask as modulation patterns, which is measured by a single-pixel detector. A pre-trained deep denoising network is utilized in the PnP-GAP algorithm to achieve better results. Furthermore, a joint reconstruction and demosaicking method is developed to restore the target color information more realistically. Simulations and optical experiments are performed to verify the feasibility and superiority of our proposed scheme by comparing it with other classical reconstruction algorithms. This new color CGI scheme will enable CGI to obtain information in real scenes more effectively and further promote its practical applications.
    Type of Medium: Online Resource
    ISSN: 1094-4087
    Language: English
    Publisher: Optica Publishing Group
    Publication Date: 2022
    detail.hit.zdb_id: 1491859-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Cells, MDPI AG, Vol. 11, No. 24 ( 2022-12-18), p. 4117-
    Abstract: Hepatocytes exhibit a multi-polarized state under the in vivo physiological environment, however, human embryonic stem cell-derived hepatocytes (hEHs) rarely exhibit polarity features in a two-dimensional (2D) condition. Thus, we hypothesized whether the polarized differentiation might enhance the maturity and liver function of hEHs. In this study, we obtained the polarized hEHs (phEHs) by using 2D differentiation in conjunct with employing transwell-based polarized culture. Our results showed that phEHs directionally secreted albumin, urea and bile acids, and afterward, the apical membrane and blood–bile barrier (BBIB) were identified to form in phEHs. Moreover, phEHs exhibited a higher maturity and capacitity of cellular secretory and drug metabolism than those of non-phEHs. Through transcriptome analysis, it was found that the polarized differentiation induced obvious changes in gene expression profiles of cellular adhesion and membrane transport in hEHs. Our further investigation revealed that the activation of Hippo and AMPK signaling pathways made contributions to the regulation of function and cellular polarity in phEHs, further verifying that the liver function of hEHs was closely related with their polarization state. These results not only demonstrated that the polarized differentiation enhanced the maturity and liver function of hEHs, but also identified the molecular targets that regulated the polarization state of hEHs.
    Type of Medium: Online Resource
    ISSN: 2073-4409
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2661518-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Cells, MDPI AG, Vol. 12, No. 3 ( 2023-02-02), p. 497-
    Abstract: Human embryonic stem cells (hESCs) hold the potential to solve the problem of the shortage of functional hepatocytes in clinical applications and drug development. However, a large number of usable hepatocytes derived from hESCs cannot be effectively obtained due to the limited proliferation capacity. In this study, we found that enhancement of liver transcription factor C/EBPβ during hepatic differentiation could not only significantly promote the expression of hepatic genes, such as albumin, alpha fetoprotein, and alpha-1 antitrypsin, but also dramatically reinforce proliferation-related phenotypes, including increasing the expression of proliferative genes, such as CDC25C, CDC45L, and PCNA, and the activation of cell cycle and DNA replication pathways. In addition, the analysis of CUT & Tag sequencing further revealed that C/EBPβ is directly bound to the promoter region of proliferating genes to promote cell proliferation; this interaction between C/EBPβ and DNA sequences of the promoters was verified by luciferase assay. On the contrary, the knockdown of C/EBPβ could significantly inhibit the expression of the aforementioned proliferative genes. RNA transcriptome analysis and GSEA enrichment indicated that the E2F family was enriched, and the expression of E2F2 was changed with the overexpression or knockdown of C/EBPβ. Moreover, the results of CUT & Tag sequencing showed that C/EBPβ also directly bound the promoter of E2F2, regulating E2F2 expression. Interestingly, Co-IP analysis exhibited a direct binding between C/EBPβ and E2F2 proteins, and this interaction between these two proteins was also verified in the LO2 cell line, a hepatic progenitor cell line. Thus, our results demonstrated that C/EBPβ first initiated E2F2 expression and then coupled with E2F2 to regulate the expression of proliferative genes in hepatocytes during the differentiation of hESCs. Therefore, our findings open a new avenue to provide an in vitro efficient approach to generate proliferative hepatocytes to potentially meet the demands for use in cell-based therapeutics as well as for pharmaceutical and toxicological studies.
    Type of Medium: Online Resource
    ISSN: 2073-4409
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2661518-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...