GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Material
Language
  • 1
    In: G3 Genes|Genomes|Genetics, Oxford University Press (OUP), Vol. 5, No. 5 ( 2015-05-01), p. 719-740
    Abstract: The Muller F element (4.2 Mb, ~80 protein-coding genes) is an unusual autosome of Drosophila melanogaster; it is mostly heterochromatic with a low recombination rate. To investigate how these properties impact the evolution of repeats and genes, we manually improved the sequence and annotated the genes on the D. erecta, D. mojavensis, and D. grimshawi F elements and euchromatic domains from the Muller D element. We find that F elements have greater transposon density (25–50%) than euchromatic reference regions (3–11%). Among the F elements, D. grimshawi has the lowest transposon density (particularly DINE-1: 2% vs. 11–27%). F element genes have larger coding spans, more coding exons, larger introns, and lower codon bias. Comparison of the Effective Number of Codons with the Codon Adaptation Index shows that, in contrast to the other species, codon bias in D. grimshawi F element genes can be attributed primarily to selection instead of mutational biases, suggesting that density and types of transposons affect the degree of local heterochromatin formation. F element genes have lower estimated DNA melting temperatures than D element genes, potentially facilitating transcription through heterochromatin. Most F element genes (~90%) have remained on that element, but the F element has smaller syntenic blocks than genome averages (3.4–3.6 vs. 8.4–8.8 genes per block), indicating greater rates of inversion despite lower rates of recombination. Overall, the F element has maintained characteristics that are distinct from other autosomes in the Drosophila lineage, illuminating the constraints imposed by a heterochromatic milieu.
    Type of Medium: Online Resource
    ISSN: 2160-1836
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2015
    detail.hit.zdb_id: 2629978-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Vascular Surgery: Venous and Lymphatic Disorders, Elsevier BV, Vol. 8, No. 1 ( 2020-01), p. 8-23.e18
    Type of Medium: Online Resource
    ISSN: 2213-333X
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2020
    detail.hit.zdb_id: 2701667-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 2892-2892
    Abstract: Background : APL is, in the vast majority of cases, driven by t(15 ;17) translocation, which leads to PML/RARA rearrangement. Remarkably, APL is an uncommon genetically simple disease and only few additional alterations, cooperating with PML/RAR, have been described at diagnostic (Welch et al, Cell 2012). Most APL can be cured with targeted therapy combining all-trans retinoic acid (ATRA) and chemotherapy (CT). However, genetic mechanisms underlying the 10-15% relapses observed with this regimen remain unclear. The goal of the present study was to identify mutations that cooperate with PML/RAR and those responsible for acquired resistance to ATRA-CT treatment in APL patients by whole-exome sequencing of diagnostic/ remission/relapse trios. Methods: Newly diagnosed APL patients included in clinical trials of the French Swiss Belgian APL group between 1994 and 2008, treated with ATRA-CT, before the introduction of first-line ATO, who experienced at least one relapse and had adequate material, were studied. We collected retrospectively 64 samples from 23 patients, including 23 diagnostic samples, 18 at first complete remission (CR) and 23 at relapse (22 first relapse and 1 second relapse). Whole exome-sequencing was performed on all samples. DNA libraries were prepared with the SureSelect human v5 kit (Agilent) and sequenced on Hiseq1000 (Illumina). The bioinformatic analysis was performed by GECO/integragen using CASAVA variant calling (Illumina) and dedicated pipeline. 18 trios and 5 duos passed the stringent quality control and were analyzed for somatic variants and copy number variations (CNV). Results : After elimination of polymorphisms, the median number of somatic variants corresponding to de novo mutation at diagnosis was 14, while only 3 new somatic variants appeared at relapse (figure 1). Notably, we failed to detect oncogene alterations other than PML/RARA in 7/23 (30%) patients. At diagnostic, 39% of patients (9/23) presented the common FLT3 alterations and at relapse 22% (5/23) of patients presented the known RARA mutations. Moreover, recurrent alterations were observed in activators of the MAPK signaling (22%): NRAS (2 patients), BRAF (1 patient), KRAS (1 patient), SPRY1 (1 patient). Mutations in the NT5C2 gene (3 patients), coding a 5'nucleotidase implicated in resistance to nucleoside-analog therapy, were solely observed at relapse, as in acute lymphoblastic leukemia (ALL). Abnormalities of epigenetic regulators were also detected at diagnostic and/or relapse: WT1 (7 patients, 30%), NSD1 (2 patients), TET2 (1 patient), ASXL1 (1 patient) and MED12 (2 patients). Homozygote WT1 inactivation by mutation plus neutral copy LOH occurred in 3 patients at relapse. The genetic markers identified allowed us to construct several evolution models. In 8 patients (35%), the diagnostic and relapse clones were clearly distinct, supporting the fact that they independently derived from pre-leukemic cells that survived ATRA/chemotherapy. In contrast, other relapses appeared to derive from the diagnostic clone. Conclusion: Our data highlight the genetic simplicity of APL with very few alterations detected and 30% patients without identified mutations in addition to PML/RARa. Our results support the existence of two prototypic mechanisms of relapse: re-emergence of a new APL from persisting pre-leukemic cells and relapse from APLs often expressing strong oncogenes at diagnosis, impeding therapy response and favoring the acquisition of resistance mutations at relapse, including PML/RARA or NT5C2. It will be interesting to assess the prevalence of those two mechanisms in the exceptional cases of relapse in patients treated with more recent frontline regimens that combine ATRA and arsenic in APL. Disclosures Ades: Celgene, Takeda, Novartis, Astex: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Fenaux:Celgene, Janssen,Novartis, Astex, Teva: Honoraria, Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancers, MDPI AG, Vol. 11, No. 12 ( 2019-12-02), p. 1921-
    Abstract: Background: Mutations in CALR observed in myeloproliferative neoplasms (MPN) were recently shown to be pathogenic via their interaction with MPL and the subsequent activation of the Janus Kinase – Signal Transducer and Activator of Transcription (JAK-STAT) pathway. However, little is known on the impact of those variant CALR proteins on endoplasmic reticulum (ER) homeostasis. Methods: The impact of the expression of Wild Type (WT) or mutant CALR on ER homeostasis was assessed by quantifying the expression level of Unfolded Protein Response (UPR) target genes, splicing of X-box Binding Protein 1 (XBP1), and the expression level of endogenous lectins. Pharmacological and molecular (siRNA) screens were used to identify mechanisms involved in CALR mutant proteins degradation. Coimmunoprecipitations were performed to define more precisely actors involved in CALR proteins disposal. Results: We showed that the expression of CALR mutants alters neither ER homeostasis nor the sensitivity of hematopoietic cells towards ER stress-induced apoptosis. In contrast, the expression of CALR variants is generally low because of a combination of secretion and protein degradation mechanisms mostly mediated through the ER-Associated Degradation (ERAD)-proteasome pathway. Moreover, we identified a specific ERAD network involved in the degradation of CALR variants. Conclusions: We propose that this ERAD network could be considered as a potential therapeutic target for selectively inhibiting CALR mutant-dependent proliferation associated with MPN, and therefore attenuate the associated pathogenic outcomes.
    Type of Medium: Online Resource
    ISSN: 2072-6694
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2527080-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Leukemia Research, Elsevier BV, Vol. 36, No. 11 ( 2012-11), p. 1365-1369
    Type of Medium: Online Resource
    ISSN: 0145-2126
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2012
    detail.hit.zdb_id: 2008028-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: The Journal of Molecular Diagnostics, Elsevier BV, Vol. 13, No. 3 ( 2011-05), p. 263-270
    Type of Medium: Online Resource
    ISSN: 1525-1578
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2011
    detail.hit.zdb_id: 2032654-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 1823-1823
    Abstract: Recent advances in myeloproliferative neoplasms (MPN) have highlighted the prevalence of mutations in the calreticulin gene (CALR), bringing a major new actor in these disorders. CALR mutations were reported in 25% of ET and in 35% of MF patients, which were non-mutated for JAK2 and MPL. CALR mutations lead to a frame-shift generating a common 36 amino acids C-terminal end and loss of the KDEL motif. Two variants account for 85% of the CALR mutations in ET and PMF: type 1, a 52-bp deletion and type2, a 5-bp insertion. 572 MPN patients negative for JAK2 and MPL mutations were collected from several French and Belgian hospitals. In our series, 396 patients were diagnosed as ET, 108 as MF and 68 as mixed MDS/MPN. We identified mutations of CALR in 368 patients (63.3%). The remaining 204 patients were designated as triple negative. In MF there was an over representation of type 1 mutation (70%) and an under representation of type 2 mutation (13%) as compared to patients with ET. This bias was associated with a higher allelic burden of CALR mutation in MF. MF patients represent a quite homogeneous group, mostly composed of men diagnosed at a median age of 62.5 with a low hemoglobin concentration (10.1 g/dl) and a low platelet count (median at 237 x 109/l). In ET patients the clinical presentation was more heterogeneous. They were mostly women (more than 61%) at a median age of diagnosis of 57 with a median platelet count of 724 x 109/l. In CALR mutated patients there were no sex prevalence and a more important thrombocytosis (785 x 109/l). The type of CALR mutation impacted also age and platelet count. We report the caracterisation of triple negative patients. In ETs they were mostly women (76.9%), particularly for ET patients under 50 years old that were almost exclusively women (27/28). In MF, triple negative patients presented a low hemoglobin concentration (8.85 g/dl) and a low leukocyte count (1.995 x 109/l). A striking characteristic is their platelet count, which was significantly lower than their group mates either in ET or in MF. This lower platelet count may suggest that in the general population, putative asymptomatic triple negative ET male patients could be retrieved, which would only be diagnosed at more advanced age with a symptomatic MF. Taken together, our results underline the differences between the two most frequent types of CALR mutation and show that CALR mutated patients should not be considered as a single entity. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 112, No. 11 ( 2008-11-16), p. 1496-1496
    Abstract: The t(10;11)(p12–13;q14–21) is a very rare but recurring chromosomal translocation observed in patients with both ALL and AML resulting in the generation of a CALM–AF10 fusion gene. Although clinical features of CALM-AF10 positive ALL have been described, there are only few data about the clinical characteristics and outcome of AML patients. We have studied 18 AML patients treated in 11 French hematological centers. Patients were included in this study after an exhaustive survey in the main French hematological centers. Clinical and biological data were collected for 18 patients diagnosed between 01/1993 and 01/2008. The characteristics of patients were as follows: median age, 30y (10–77y); sex ratio (M/F) 1,25; median WBC count, 17.6 G/L (0.8–298) and 4 pts (22%) with WBC & gt;100 G/L; median Hb, 9.4 g/L (5.4–12.6); median platelets, 84 G/L (10–238), median bone marrow blasts, 90% (35–98%). FAB subtypes were: 1 M0; 10 M1, 1 M2 and 6 M5. Extramedullary disease was found in 10 pts (56%) (gingival hypertrophy, 3/18; lymph nodes, 9/18; chloromas, 2/18; serous involvement, 2/18; hepatosplenomegaly, 1/18). Of note, 3 pts had previously received polychemotherapy for diffuse large B cell lymphoma (DLBCL) and 1pt for AML without cytogenetic analysis available at diagnosis. The t(10;11)(p12–13;q14–21) translocation was found as the sole chromosomal abnormality in 7 pts (39%) whereas 11 pts displayed additional abnormalities including high risk abnormalities (−7; 5q−; Ph+; 17p−) in 4 of them. Trisomies 4 and 19, frequently observed in our series, might be nonrandom secondary abnormalities in CALM-AF10 AMLs. In all cases, the presence of the CALM-AF10 rearrangement was confirmed either by RT-PCR or by FISH analysis. FLT3 mutations were screened in 6 samples but no FLT3-ITD mutation was detected. Immunophenotypic data showed that CD13, CD33, CD65, CD117, CD34, HLADR and MPO were expressed in 69%, 88%, 50%, 50%, 50%, 92% and 67% of cases, respectively. CD7 was also frequently expressed (9/11, 82%) whereas CD2, CD4, CD10 and CD19 were expressed only in a few cases. Induction chemotherapy using anthracyclines and aracytin was delivered in 17 patients, 3 of them received timed-sequential induction. At day 15, 8/14 pts receiving standard induction had more than 5% marrow blasts and received a second induction course. There was no early death and the response rate was 66% (11 CR + 1 CRi). Six patients underwent allogeneic stem-cell transplantation (Allo-SCT) (5 in CR1, 1 refractory), 4 pts consolidation chemotherapy alone and 2 pts autologous SCT while 1 patient died in CRi. Of note, the patient allografted with refractory disease achieved CR after allo-SCT and is alive at 12 months from diagnosis. 6 pts relapsed (3 after allo-SCT, 2 after auto-SCT and 1 after consolidation chemotherapy) and second CR was achieved in 5 but CR2 were short lasting except for two pts for which the duration of CR2 was 3 and 10 years, respectively. Among the 17 patients treated by induction chemotherapy, median overall survival was 18 months. With a median follow-up of 11 months (range, 2 to 181 months), the median remission duration and median OS for CR/CRi patients were 23 and 28 months, respectively. There were 3 long term survivors ( & gt; 3 years), 2 pts in CR1 who received chemotherapy only as consolidation therapy and one in CR3 after 2 allo-SCTs. CALM-AF10 AMLs are characterized by younger age, extramedullary involvement, and high relapse rate. Some cases may be therapy-related AMLs, secondary to chemotherapy for other hematological malignancies and particularly DLBCL. Although the prognosis is poor, long term response can be achieved in a subset of patients.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2008
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 116, No. 21 ( 2010-11-19), p. 3378-3378
    Abstract: Abstract 3378 Chronic Myelogenous Leukemia (CML) originates in the Philadelphia chromosome, a reciprocal translocation creating the fusion oncogene BCR-ABL. In 1–2% of CML cases, breakpoints fall outside the M-BCR gene on chromosome 22, leading to the synthesis of a variety of atypical BCR-ABL transcripts [shortened: e1a2 (m-BCR), e6a2, e8a2, b2a3 (e13a3), b3a3 (e14a3), or elongated transcripts: e19a2 (m-BCR)] and to the synthesis of different molecular weight BCR-ABL proteins that might have different tyrosine kinase activities. Thus, clinical phenotypes and BCR-ABL inhibition by tyrosine kinase inhibitors might be different and lead to different prognostic features. We retrospectively analysed at the national level, the clinical characteristics and the responses to imatinib (IM) of 63 patients with CML harbouring atypical BCR-ABL transcripts: 22 e1a2 [Group 1 (G1)] , 20 e19a2 [Group 2 (G2)], 5 e8a2 [Group 3 (G3)] , 4 e6a2 [Group 4 (G4)], 5 b2a3 [Group 5 (G5)] , and 3 b3a3 [Group 6 (G6)] BCR-ABL transcripts. The general characteristics of the patients and their best response to IM are depicted in Table 1: Table 1 Group 1(e1a2) Group 2 (e19a2) Group 3 (e8a2) Group 4 (e6a2) Group 5 (b2a3) Group 6 (b3a3) n 22 20 5 8 5 3 M/F 7/15 6/14 4/1 4/4 5/0 0/3 Median age (years) 70 69 43 57 62 47 CP/AccP/MBC 20/0/2 17/1/2 5/0/0 4/1/3 4/1/0 2/1/0 Sokal (L/H/I/Ukn)* 6/8/2/4 1/3/9/4 3/1/0/1 1/2/1/0 1/2/0/1 0/2/0/0 Leukocytes (G/l, median) 60.85 28.3 55 28.4 93 82.4 Hemoglobin (g/dl, median) 12 10.2 11.7 10.95 11.1 10.2 Platelets (G/l, median) 303 848 253 259 167 363 Monocytes (G/l median) 4.8 0.8 2.34 0.05 1.08 0.825 Additional Clonal Abnormalities at diag (% of patients) 20 28 0 29 25 0 IM duration (median, years) 1.55 1.38 1.58 0.8 1.13 1.42 Interval Diagnosis-IM (median, years) 1.31 1.48 1 1.17 0.87 1.66 Best response to IM* No response 20 0 0 0 0 0 CHR (%) 13 32 0 0 0 0 Minor CyR (%) 47 0 0 0 0 0 PCyR (%) 0 10 20 10 25 67 CCyR (%) 13 32 60 50 0 0 MMR (%) 7 26 20 40 75 33 Follow-up since diag (median, years) 3.24 1.57 1.6 3.82 1.5 1.68 (CP states for Chronic phase, AccP for accelerated phase, MBC for myeloid blast crisis, L for Low, I for intermediate, H for High, Ukn for Unknown, * For CP patients only) Surprisingly, e1a2 and e19a2 transcripts seem significantly more frequent in females than in males conversely to typical BCR-ABL transcripts (p=0.01) and occurring more often in the elderly (p=0.05). The majority of the patients presented with typical cytological CML features, however, a significant monocytosis was observed in e1a2 and e8a2 atypical transcripts (p=0.0002). The median time on IM and the interval between diagnosis and IM were not statistically different between the 6 groups. Overall, there was no significant difference in the (hematologic, cytogenetic, molecular) responses to IM, but e1a2 transcripts seem less sensitive to this agent. The overall survival since diagnosis or since IM initiation was not different between atypical transcripts (p=0.55 and p=0.73 respectively), however, the progression-free survival (PFS) since diagnosis with e1a2 transcripts was significantly worse than for all other atypical transcripts (p=0.02) as shown in Figure 1: The PFS since IM initiation was somewhat worse for e1a2 transcripts, but close to significance (p=0.09), but the follow-up is not very long yet. Fifteen patients among 63 had second generation TKIs (TKI2), 7 in group 1, 3 in group 2, 1 in groups 3, 4, 5, and 2 in group 6. Only one patient (b3a3 transcript) developed a MBC being on IM. Two patients developed a T315I BCR-ABL mutation (1 e1a2, and 1 e6a2). Two patients got allo-transplanted (1 e1a2 alive and well at last follow-up, 1 e19 a2 died from GVHD). In conclusion, atypical BCR-ABL transcripts induce a particular molecular and subsequent clinical phenotypes, particularly e1a2 transcripts showing in this study poor prognosis features. The response of atypical BCR-ABL transcripts to IM might vary from that what it is for classical M-BCR transcripts, but a longer follow-up is needed. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2010
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 117, No. 21 ( 2011-05-26), p. 5719-5722
    Abstract: Acute basophilic leukemia (ABL) is a rare subtype of acute leukemia with clinical features and symptoms related to hyperhistaminemia because of excessive growth of basophils. No known recurrent cytogenetic abnormality is associated with this leukemia. Rare cases of t(X;6)(p11;q23) translocation have been described but these were sporadic. We report here 4 cases of ABL with a t(X;6)(p11;q23) translocation occurring in male infants. Because of its location on chromosome 6q23, MYB was a good candidate gene. Our molecular investigations, based on fluorescence in situ hybridization and rapid amplification of cDNA ends, revealed that the translocation generated a MYB-GATA1 fusion gene. Expression of MYB-GATA1 in mouse lineage-negative cells committed them to the granulocyte lineage and blocked at an early stage of differentiation. Taken together, these results establish, for the first time, a link between a recurrent chromosomal translocation and the development of this particular subtype of infant leukemia.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2011
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...