GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 78, No. 13_Supplement ( 2018-07-01), p. 74-74
    Abstract: Ovarian cancer is one of the most lethal cancers in the female reproductive system. Previous study suggested that long term treatment of estrogen such as hormonal replacement therapy (HRT) may increase the risk of ovarian cancer, however the role of estrogen in ovarian carcinogenesis is still controversial. To decipher this complicated process, we generated a mathematical model and found that estrogen-mediated up-regulation of E2F6 could upregulate the ovarian cancer stem/initiating marker, c-kit by two means one through epigenetic silencing of their co-targeted miR193a by binding of E2F6 which subsequently recruit EZH2 to miR-193a promoter; and second, by competing endogenous (ceRNA) mechanism. To confirm this model, treatment of E2 or environmental hormone, BPA resulted in upregulation of both E2F6 and c-kit but down-regulation of miR-193a in immortalized ovarian surface epithelial cells. Further bisulfite pyrosequencing, ChIP-qPCR and epigenetic treatment found that miR193a was epigenetically silenced by DNA methylation and H3K27me3 in CP70 but not HeyC2 ovarian cancer cells. Overexpression of miR193a inhibited tumor growth in vitro and in vivo. Depletion of EZH2 or E2F6 in CP70 restored miR-193a expression and decreased the number of “ovo” spheroid by reversing the repressive chromatin status of miR-193a promoter. To further explore the biological significance of this E2F6 ceRNA network, integrative RNA-Seq and computational analysis found that PBX1, a miR-193a target and transcriptional activator of the immunosuppressive cytokine IL-10, was down-regulated in E2F6 and EZH2 knockdown CP70 cells. Overexpression of E2F6 3'UTR containing miR-193a MRE but not MRE mutant increased the expression of PBX1 and IL10 in ovarian cancer cells. Importantly, co-culture of conditional media from E2F6 3'UTR overexpressing CP70 cells inhibited the differentiation of THP-1 monocytes into dendritic cell and the T-cell activating function of this THP-1 derived DC. This phenomenon can be rescued by incubation of anti-IL-10 antibody or pretreatment of CP70 cells with EZH2 inhibitor. Finally, clinical studies demonstrated that patients with higher promoter methylation of miR193a were associated with poor survival. Serum IL10 level was found to be higher in high staged ovarian cancer patients and patients with higher E2F6 mRNA level. Additional analysis from TCGA ovarian cancer expression microarray dataset demonstrated that ovarian cancer patients with low expression of EZH2, showed a positive correlation between E2F6, c-KIT and PBX1 resembling the ceRNA phenomenon between these mRNAs. Taken together, our results showed that estrogen-mediated E2F6 ceRNA network can regulate cancer stemness and anti-tumor immunity of DC through epigenetic silencing of miR-193a. Anti-estrogen therapy together with the EZH2 inhibitor may be a novel strategy against this deadly cancer. Citation Format: Frank Hsueh-Che Cheng, Hon-Yi Lin, Yin-Chen Chen, Tzy-Wei Hwang, Rui-Lan Huang, Chia-Bin Chang, Ru-Inn Lin, Ching-Wen Lin, Gary C.W. Chen, Jora M. J. Lin, Yu-Ming Chuang, Jian-Liang Chou, Chin Li, Alfred S.L. Cheng, Hung-Cheng Lai, Shu-Fen Wu, Je-Chiang Tsai, Michael W.Y. Chan. E2F6-mediated ceRNA and epigenetic silencing of miR193a lead to cancer stemness and anticancer immunity in ovarian cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2018;78(13 Suppl):Abstract nr 74.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2018
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 75, No. 15_Supplement ( 2015-08-01), p. 3314-3314
    Abstract: Radioresistance is still an emerging problem for radiotherapy of oral cancer. Aberrant epigenetic alterations play an important role in cancer development, yet the role of such alterations in radioresistance of oral cancer is not fully explored. Using Illumina 27K methylation BeadChip microarray, we identified promoter hypermethylation of FHIT (fragile histidine triad) in radioresistant OML1-R cells, established from hypo-fractionated irradiation (5-Gy by 10 fractions) of parental OML1 radiosensitive oral cancer cells. Further analysis confirmed that transcriptional repression of FHIT was due to promoter hypermethylation and H3K27me3 as demonstrated by MBDcap-PCR, bisulfite pyrosequencing and ChIP-PCR. These phenomenon were partially attributed to overexpression of EZH2 and DNMT3a, 3b in OML1-R cells. In consistent with these observations, treatment of 5-azaDC, EZH2 inhibitor (GSK343) or depletion of EZH2 by lentiviral knockdown restored FHIT expression in OML1-R cells. Interestingly, knockdown of EZH2 also reversed histone modifications (increased of H3K4me3 and decreased of H3K27me3) and reduced promoter methylation of FHIT thus suggesting that H3K27me3 linked to DNA methylation in this loci. We also analyzed the expression of FHIT in primary human oral keratinocyte (HOK) and four other oral cancer cell lines (OCSL, SCC25, SAS, and SCC4). FHIT expression demonstrated a tight inverse relationship with its promoter methylation. Ectopic expression of FHIT restored radiosensitivity (single fraction, 10-Gy) in OML1-R cells and oral cancer cells (SAS, SCC25) showing epigenetic silencing of FHIT. These phenomenon may be due to restoration of Chk2 phosphorylation, induction of apoptosis and G2/M check point. Reciprocal experiments also showed that depletion of FHIT in OSCL cells, which highly express FHIT, slightly enhanced radioresistance. Clinically, bisulfite pyrosequencing and iummnohistochemistry revealed that promoter hypermethylation of FHIT inversely correlated with its expression. Patients with higher FHIT methylation (methylation & gt;10%, n = 22) are associated with lower locoregional control (P & lt;0.05) and overall survival rate (P & lt;0.05) than patients with lower FHIT methylation (n = 18). For patients treated with post-operative radiotherapy alone (n = 19), sub-group analysis also found that patients with higher FHIT methylation tend to have a 2-fold lower locoregional control rate (P = 0.0998). Further in vivo therapeutic experiments confirmed that treatment of 5-azaDC significantly resensitized radioresistant oral cancer cell xenograft tumors. These results show that epigenetic silencing of FHIT contributes partially to radioresistance and predicts clinical outcomes in irradiated oral cancer. The radiosensitizing effect of epigenetic interventions warrants further clinical investigation. Citation Format: Hon-Yi Lin, Shih-Kai Hung, Moon-Sing Lee, Wen-Yen Chiou, Tze-Ta Huang, Chih-En Tseng, Liang-Yu Shih, Ru-Inn Lin, Jora Lin, Yi-Hui Lai, Chia-Bin Chang, Feng-Chun Hsu, Liang-Cheng Chen, Shiang-Jiun Tsai, Yu-Chieh Su, Szu-Chi Li, Hung-Chih Lai, Wen-Lin Hsu, Dai-Wei Liu, Chien-Kuo Tai, Shu-Fen Wu, Michael W. Chan. DNA methylome analysis identifies epigenetic silencing of FHIT as a determining factor for radiosensitivity in oral cancer and its implication in treatment and outcome prediction. [abstract] . In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 3314. doi:10.1158/1538-7445.AM2015-3314
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2015
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 71, No. 8_Supplement ( 2011-04-15), p. 3433-3433
    Abstract: The TGF-β signaling pathway plays an important role in controlling cell growth and differentiation. In advanced ovarian cancer, frequent TGF-β-induced metastasis or epithelial-mesenchymal transition (EMT) can be observed. This phenomenon is often associated with epigenetic silencing of epithelial marker, E-cadherin which can also be observed in ovarian cancer cell lines that demethylation treatment restored E-cadherin expression. We recently hypothesized that long term activation of TGF-β signaling may induce EMT phenotype by epigenetic silencing of E-cadherin and that inhibition of the signaling may restore E-cadherin and reverse EMT in ovarian cancer (Chou et al., Expert Opin Ther Targets 2010). In this study, we cloned the cDNA of the inhibitory SMAD, SMAD7 from a human immortalized ovarian surface epithelial cell, IOSE into pcDNA3.1 mammalian expression vector. The inhibitory effect of this SMAD7 expression vector on TGF-β signaling has been confirmed by reporter assay. We then stably transfected the SMAD7 expression vector into a mesenchymal ovarian cancer cell, CP70 in which E-cadherin is silenced by complete promoter methylation. Cells over-expressing SMAD7 showed up-regulation of SMAD7 and a decrease in SMAD2 phosphorylation while the control cells maintained a hyperphosphorylation of SMAD2 thus suggesting that TGF-β signaling is disrupted in SMAD7-overexpressing cells. We further examined the expression of E-cadherin from passage 5 up to 30 of the stable transfectants. Surprisingly, stable restoration of E-cadherin can only be observed from passage 20 and thereafter, of the SMAD7-overexpressing cells, while E-cadherin remained silence in the control cells. To investigate if this restoration is due to promoter demethylation of E-cadherin, we performed bisulphite pyrosequencing on the E-cadherin promoter CpG island spanning -586 to -12 of the region. Compared with control cells, consistent demethylation of E-cadherin promoter can be observed at 2 CpG sites located at -214 and -235 of the promoter such that gradual demethylation occurred from passage 5 to 30 of the SMAD7-overexpressing cells (passage 20, methylation% control vs SMAD7: 91% vs 67% at -235; 80% vs 52% at -214); while the rest of the CpG sites remained heavily methylated. This demethylation may be due to down-regulation of transcriptional repressor, TWIST after SMAD7 transfection. Additionally, one of the SMAD7 stable expression clones with highest restoration of E-cadherin showed decreased migration and invasion ability as determined by wound healing and invasion assay. Taken together, disruption of TGF-β signaling can induce demethylation of E-cadherin promoter and reverse EMT phenotype in ovarian cancer. The therapeutic potential of targeting TGF-β signaling pathway in inhibiting metastasis of ovarian cancer deserves further investigation. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 102nd Annual Meeting of the American Association for Cancer Research; 2011 Apr 2-6; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2011;71(8 Suppl):Abstract nr 3433. doi:10.1158/1538-7445.AM2011-3433
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2011
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Oncotarget, Impact Journals, LLC, Vol. 6, No. 2 ( 2015-01-20), p. 915-934
    Type of Medium: Online Resource
    ISSN: 1949-2553
    URL: Issue
    Language: English
    Publisher: Impact Journals, LLC
    Publication Date: 2015
    detail.hit.zdb_id: 2560162-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Cancer Science, Wiley, Vol. 110, No. 3 ( 2019-03), p. 1085-1095
    Abstract: Ovarian cancer is the most lethal cancer of the female reproductive system. In that regard, several epidemiological studies suggest that long‐term exposure to estrogen could increase ovarian cancer risk, although its precise role remains controversial. To decipher a mechanism for this, we previously generated a mathematical model of how estrogen‐mediated upregulation of the transcription factor, E2F6, upregulates the ovarian cancer stem/initiating cell marker, c‐Kit, by epigenetic silencing the tumor suppressor miR‐193a , and a competing endogenous (ceRNA) mechanism. In this study, we tested that previous mathematical model, showing that estrogen treatment of immortalized ovarian surface epithelial cells upregulated both E2F6 and c‐KIT , but downregulated miR‐193a . Luciferase assays further confirmed that microRNA‐193a targets both E2F6 and c‐Kit . Interestingly, ChIP‐PCR and bisulphite pyrosequencing showed that E2F6 also epigenetically suppresses miR‐193a , through recruitment of EZH2, and by a complex ceRNA mechanism in ovarian cancer cell lines. Importantly, cell line and animal experiments both confirmed that E2F6 promotes ovarian cancer stemness, whereas E2F6 or EZH2 depletion derepressed miR‐193a , which opposes cancer stemness, by alleviating DNA methylation and repressive chromatin. Finally, 118 ovarian cancer patients with miR‐193a promoter hypermethylation had poorer survival than those without hypermethylation. These results suggest that an estrogen‐mediated E2F6 ceRNA network epigenetically and competitively inhibits microRNA‐193a activity, promoting ovarian cancer stemness and tumorigenesis.
    Type of Medium: Online Resource
    ISSN: 1347-9032 , 1349-7006
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 2115647-5
    detail.hit.zdb_id: 2111204-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Frontiers in Cardiovascular Medicine, Frontiers Media SA, Vol. 7 ( 2020-2-21)
    Type of Medium: Online Resource
    ISSN: 2297-055X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2020
    detail.hit.zdb_id: 2781496-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Oral Oncology, Elsevier BV, Vol. 49, No. 4 ( 2013-4), p. 336-344
    Type of Medium: Online Resource
    ISSN: 1368-8375
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2013
    detail.hit.zdb_id: 1120465-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Cancer Cell International, Springer Science and Business Media LLC, Vol. 21, No. 1 ( 2021-12)
    Abstract: Urothelial carcinoma (UC) is the second most common malignancy of the urinary system with high rate of recurrence, UC patients therefore needed to be treated with surgery followed by chemotherapy. Development of novel therapeutics with minimal side-effect is an urgent issue. Our previous study showed that cyproheptadine (CPH), an anti-histamine, exhibited antitumor activity in UC in vitro and in an xenograft model. However, the molecular mechanism of how CPH inhibits tumor progression is not fully understood. Methods Genes that were upregulated after treatment with CPH in UC cells, were examined by RNA-Seq. Real-time quantitative PCR (RT-qPCR) was employed to detect IRF6 expression while COBRA assay and bisulphite pyrosequencing were used to examine promoter methylation of IRF6 . Enrichment of total H3K27 acetylation and H3K4 mono-methylation were detected by western blotting. Colony formation and flow cytometry were used to examine proliferation and apoptosis in UC cells overexpressed or depleted with IRF6. Nude mice xenograft model was used to examine the effect of IRF6 in UC. Results Our result showed that several genes, including IRF6 were upregulated after treatment with CPH in BFTC905 UC cells. Further experiments found that treatment of CPH could restore the expression of IRF6 in several other UC cell lines, probably due to promoter hypomethylation and enrichment of H3K27 acetylation and H3K4 mono-methylation. These results may be due to the fact that CPH could alter the activity, but not the expression of epigenetic modifiers. Finally, re-expression of IRF6 in UC inhibited tumor growth in vitro and in an xenograft mouse model, by inducing apoptosis. Conclusion In conclusion, our results suggested that CPH may be an epigenetic modifier, modulating the expression of the potential tumor suppressor IRF6 , in inhibiting tumor growth in UC.
    Type of Medium: Online Resource
    ISSN: 1475-2867
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2091573-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Epigenetics, Informa UK Limited, Vol. 6, No. 6 ( 2011-06), p. 727-739
    Type of Medium: Online Resource
    ISSN: 1559-2294 , 1559-2308
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 2011
    detail.hit.zdb_id: 2325691-6
    detail.hit.zdb_id: 2248598-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 83, No. 7_Supplement ( 2023-04-04), p. 2243-2243
    Abstract: Urothelial carcinoma (UC) is the second most common malignancy of the urinary system with high rate of recurrence, UC patients therefore needed to be treated with surgery followed by chemotherapy. Development of novel therapeutics with minimal side-effect is an urgent issue. Our previous study showed that cyproheptadine (CPH), an anti-histamine, exhibited antitumor activity in UC in vitro and in an xenograft model. In this study, we performed RNA-Seq to examine genes that are differentially expressed after treatment with CPH in UC cells. Our result showed that several genes, including IRF6, were upregulated after treatment with CPH in BFTC905 UC cells. Further experiments found that treatment of CPH could restore the expression of IRF6 in several other UC cell lines, which is due to promoter hypomethylation and enrichment of H3K27 acetylation, as well as H3K4 mono-methylation. Importantly, treatment of CPH can inhibit tumor growth in a syngeneic mouse tumor model. The tumor growth can be further inhibited by combination treatment of CPH and immune checkpoint blockade. Flow cytometric analysis of the tumor found that NK cells are significantly enriched in the CPH treatment group, as compared to DMSO control. Co-culture experiments confirmed that UC cells pretreated with CPH showed an increased NK-92-mediated cytotoxicity. In conclusion, these results suggested that treatment of CPH can inhibit tumor growth, by epigenetic priming of IRF6 in UC. The role of CPH in eliciting anti-tumor innate immune response deserves further investigation. Citation Format: Pie-Che Chen, Guan-Ling Lin, Hon-Yi Lin, Wan-Hong Huang, Yu-Ming Chuang, Ru-Inn Lin, Shu-Fen Wu, Cheng-Huang Shen, Michael W.Y. Chan. Cyproheptadine exhibits anti-tumor activity by reversing the epigenetic silencing of IRF6 in urothelial carcinoma [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstrac ts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 2243.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2036785-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...