GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Immunology Vol. 13 ( 2022-12-8)
    In: Frontiers in Immunology, Frontiers Media SA, Vol. 13 ( 2022-12-8)
    Abstract: Using interpretable machine learning, we sought to define the immune microenvironment subtypes and distinctive genes in AD. Methods ssGSEA, LASSO regression, and WGCNA algorithms were used to evaluate immune state in AD patients. To predict the fate of AD and identify distinctive genes, six machine learning algorithms were developed. The output of machine learning models was interpreted using the SHAP and LIME algorithms. For external validation, four separate GEO databases were used. We estimated the subgroups of the immunological microenvironment using unsupervised clustering. Further research was done on the variations in immunological microenvironment, enhanced functions and pathways, and therapeutic medicines between these subtypes. Finally, the expression of characteristic genes was verified using the AlzData and pan-cancer databases and RT-PCR analysis. Results It was determined that AD is connected to changes in the immunological microenvironment. WGCNA revealed 31 potential immune genes, of which the greenyellow and blue modules were shown to be most associated with infiltrated immune cells. In the testing set, the XGBoost algorithm had the best performance with an AUC of 0.86 and a P-R value of 0.83. Following the screening of the testing set by machine learning algorithms and the verification of independent datasets, five genes (CXCR4, PPP3R1, HSP90AB1, CXCL10, and S100A12) that were closely associated with AD pathological biomarkers and allowed for the accurate prediction of AD progression were found to be immune microenvironment-related genes. The feature gene-based nomogram may provide clinical advantages to patients. Two immune microenvironment subgroups for AD patients were identified, subtype2 was linked to a metabolic phenotype, subtype1 belonged to the immune-active kind. MK-866 and arachidonyltrifluoromethane were identified as the top treatment agents for subtypes 1 and 2, respectively. These five distinguishing genes were found to be intimately linked to the development of the disease, according to the Alzdata database, pan-cancer research, and RT-PCR analysis. Conclusion The hub genes associated with the immune microenvironment that are most strongly associated with the progression of pathology in AD are CXCR4, PPP3R1, HSP90AB1, CXCL10, and S100A12. The hypothesized molecular subgroups might offer novel perceptions for individualized AD treatment.
    Type of Medium: Online Resource
    ISSN: 1664-3224
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2606827-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Frontiers Media SA ; 2023
    In:  Frontiers in Immunology Vol. 14 ( 2023-2-21)
    In: Frontiers in Immunology, Frontiers Media SA, Vol. 14 ( 2023-2-21)
    Abstract: We developed a novel system for quantifying DNA damage response (DDR) to help diagnose and predict the risk of Alzheimer’s disease (AD). Methods We thoroughly estimated the DDR patterns in AD patients Using 179 DDR regulators. Single-cell techniques were conducted to validate the DDR levels and intercellular communications in cognitively impaired patients. The consensus clustering algorithm was utilized to group 167 AD patients into diverse subgroups after a WGCNA approach was employed to discover DDR-related lncRNAs. The distinctions between the categories in terms of clinical characteristics, DDR levels, biological behaviors, and immunological characteristics were evaluated. For the purpose of choosing distinctive lncRNAs associated with DDR, four machine learning algorithms, including LASSO, SVM-RFE, RF, and XGBoost, were utilized. A risk model was established based on the characteristic lncRNAs. Results The progression of AD was highly correlated with DDR levels. Single-cell studies confirmed that DDR activity was lower in cognitively impaired patients and was mainly enriched in T cells and B cells. DDR-related lncRNAs were discovered based on gene expression, and two different heterogeneous subtypes (C1 and C2) were identified. DDR C1 belonged to the non-immune phenotype, while DDR C2 was regarded as the immune phenotype. Based on various machine learning techniques, four distinctive lncRNAs associated with DDR, including FBXO30-DT, TBX2-AS1, ADAMTS9-AS2, and MEG3 were discovered. The 4-lncRNA based riskScore demonstrated acceptable efficacy in the diagnosis of AD and offered significant clinical advantages to AD patients. The riskScore ultimately divided AD patients into low- and high-risk categories. In comparison to the low-risk group, high-risk patients showed lower DDR activity, accompanied by higher levels of immune infiltration and immunological score. The prospective medications for the treatment of AD patients with low and high risk also included arachidonyltrifluoromethane and TTNPB, respectively, Conclusions In conclusion, immunological microenvironment and disease progression in AD patients were significantly predicted by DDR-associated genes and lncRNAs. A theoretical underpinning for the individualized treatment of AD patients was provided by the suggested genetic subtypes and risk model based on DDR.
    Type of Medium: Online Resource
    ISSN: 1664-3224
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2606827-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Medical Virology, Wiley, Vol. 93, No. 2 ( 2021-02), p. 934-944
    Abstract: Coagulation dysfunction affects the prognosis of COVID‐19 patients. Lower platelet, higher d‐dimer and fibrinogen indicate increased severity risk in COVID‐19 patients. No difference in PT and APTT is evident between severe and non‐severe COVID‐19 patients upon admission.
    Type of Medium: Online Resource
    ISSN: 0146-6615 , 1096-9071
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 752392-0
    detail.hit.zdb_id: 1475090-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Clinical Interventions in Aging, Informa UK Limited, Vol. Volume 13 ( 2018-04), p. 641-649
    Type of Medium: Online Resource
    ISSN: 1178-1998
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 2018
    detail.hit.zdb_id: 2212420-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Ovid Technologies (Wolters Kluwer Health) ; 2012
    In:  Journal of Cardiovascular Medicine Vol. 13, No. 11 ( 2012-11), p. 741-746
    In: Journal of Cardiovascular Medicine, Ovid Technologies (Wolters Kluwer Health), Vol. 13, No. 11 ( 2012-11), p. 741-746
    Type of Medium: Online Resource
    ISSN: 1558-2027
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2012
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Genetics Vol. 13 ( 2022-8-12)
    In: Frontiers in Genetics, Frontiers Media SA, Vol. 13 ( 2022-8-12)
    Abstract: Background: Sepsis is a systemic inflammatory response syndrome (SIRS) with heterogeneity of clinical symptoms. Studies further exploring the molecular subtypes of sepsis and elucidating its probable mechanisms are urgently needed. Methods: Microarray datasets of peripheral blood in sepsis were downloaded from the Gene Expression Omnibus (GEO) database, and differentially expressed genes (DEGs) were identified. Weighted gene co-expression network analysis (WGCNA) analysis was conducted to screen key module genes. Consensus clustering analysis was carried out to identify distinct sepsis molecular subtypes. Subtype-specific pathways were explored using gene set variation analysis (GSVA). Afterward, we intersected subtype-related, dramatically expressed and module-specific genes to screen consensus DEGs (co-DEGs). Enrichment analysis was carried out to identify key pathways. The least absolute shrinkage and selection operator (LASSO) regression analysis was used for screen potential diagnostic biomarkers. Results: Patients with sepsis were classified into three clusters. GSVA showed these DEGs among different clusters in sepsis were assigned to metabolism, oxidative phosphorylation, autophagy regulation, and VEGF pathways, etc. In addition, we identified 40 co-DEGs and several dysregulated pathways. A diagnostic model with 25-gene signature was proven to be of high value for the diagnosis of sepsis. Genes in the diagnostic model with AUC values more than 0.95 in external datasets were screened as key genes for the diagnosis of sepsis. Finally, ANKRD22, GPR84, GYG1, BLOC1S1, CARD11, NOG, and LRG1 were recognized as critical genes associated with sepsis molecular subtypes. Conclusion: There are remarkable differences in and enriched pathways among different molecular subgroups of sepsis, which may be the key factors leading to heterogeneity of clinical symptoms and prognosis in patients with sepsis. Our current study provides novel diagnostic and therapeutic biomarkers for sepsis molecular subtypes.
    Type of Medium: Online Resource
    ISSN: 1664-8021
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2606823-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Aging Neuroscience Vol. 14 ( 2022-7-28)
    In: Frontiers in Aging Neuroscience, Frontiers Media SA, Vol. 14 ( 2022-7-28)
    Abstract: Alzheimer's disease is the most common dementia with clinical and pathological heterogeneity. Cuproptosis is a recently reported form of cell death, which appears to result in the progression of various diseases. Therefore, our study aimed to explore cuproptosis-related molecular clusters in Alzheimer's disease and construct a prediction model. Methods Based on the GSE33000 dataset, we analyzed the expression profiles of cuproptosis regulators and immune characteristics in Alzheimer's disease. Using 310 Alzheimer's disease samples, we explored the molecular clusters based on cuproptosis-related genes, along with the related immune cell infiltration. Cluster-specific differentially expressed genes were identified using the WGCNA algorithm. Subsequently, the optimal machine model was chosen by comparing the performance of the random forest model, support vector machine model, generalized linear model, and eXtreme Gradient Boosting. Nomogram, calibration curve, decision curve analysis, and three external datasets were applied for validating the predictive efficiency. Results The dysregulated cuproptosis-related genes and activated immune responses were determined between Alzheimer's disease and non-Alzheimer's disease controls. Two cuproptosis-related molecular clusters were defined in Alzheimer's disease. Analysis of immune infiltration suggested the significant heterogeneity of immunity between distinct clusters. Cluster2 was characterized by elevated immune scores and relatively higher levels of immune infiltration. Functional analysis showed that cluster-specific differentially expressed genes in Cluster2 were closely related to various immune responses. The Random forest machine model presented the best discriminative performance with relatively lower residual and root mean square error, and a higher area under the curve (AUC = 0.9829). A final 5-gene-based random forest model was constructed, exhibiting satisfactory performance in two external validation datasets (AUC = 0.8529 and 0.8333). The nomogram, calibration curve, and decision curve analysis also demonstrated the accuracy to predict Alzheimer's disease subtypes. Further analysis revealed that these five model-related genes were significantly associated with the Aβ-42 levels and β-secretase activity. Conclusion Our study systematically illustrated the complicated relationship between cuproptosis and Alzheimer's disease, and developed a promising prediction model to evaluate the risk of cuproptosis subtypes and the pathological outcome of Alzheimer's disease patients.
    Type of Medium: Online Resource
    ISSN: 1663-4365
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2558898-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Cardiology Research and Practice, Hindawi Limited, Vol. 2019 ( 2019-11-11), p. 1-6
    Abstract: Background . The aim of the present study was to investigate the association between fibrinogen-to-albumin ratio (FAR) with contrast-induced nephropathy (CIN) in patients undergoing emergency percutaneous coronary intervention (PCI). Methods . 565 patients with emergency PCI were consecutively enrolled. The primary outcome was CIN defined as either a 25% increase in baseline serum creatinine levels or a 0.5 mg/dL (44  μ mol/L) increase in absolute serum creatinine levels within 72 h after the contrast medium exposure. Logistic regression analysis was applied to analyze whether FAR was an independent risk factor for CIN. Results . Overall, 29 (5.1%) patients developed CIN. Compared with the patients without CIN, the patients developing CIN had lower albumin (39.79 ± 3.95 vs. 37.14 ± 5.21, P = 0.012 ) and higher fibrinogen levels (3.51 ± 0.94 vs. 4.14 ± 0.96, P 〈 0.001 ). In the multivariate logistic analysis, FAR was an independent predictor of CIN (OR = 3.97; 95% CI, 1.61–9.80; P = 0.003 ) along with perihypotension, age 〉 75 years, and LVEF 〈 45%, and 0.106 was the optimal cutoff value of preprocedural FAR to predict CIN. Conclusion . Preprocedural levels of FAR were associated with CIN in patients after emergency PCI.
    Type of Medium: Online Resource
    ISSN: 2090-8016 , 2090-0597
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2019
    detail.hit.zdb_id: 2506187-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Pharmacology Vol. 13 ( 2022-8-19)
    In: Frontiers in Pharmacology, Frontiers Media SA, Vol. 13 ( 2022-8-19)
    Abstract: Introduction: Alzheimer’s disease (AD) is a severe dementia with clinical and pathological heterogeneity. Our study was aim to explore the roles of endoplasmic reticulum (ER) stress-related genes in AD patients based on interpretable machine learning. Methods: Microarray datasets were obtained from the Gene Expression Omnibus (GEO) database. We performed nine machine learning algorithms including AdaBoost, Logistic Regression, Light Gradient Boosting (LightGBM), Decision Tree (DT), eXtreme Gradient Boosting (XGBoost), Random Forest, K-nearest neighbors (KNN), Naïve Bayes, and support vector machines (SVM) to screen ER stress-related feature genes and estimate their efficiency of these genes for early diagnosis of AD. ROC curves were performed to evaluate model performance. Shapley additive explanation (SHAP) was applied for interpreting the results of these models. AD patients were classified using a consensus clustering algorithm. Immune infiltration and functional enrichment analysis were performed via CIBERSORT and GSVA, respectively. CMap analysis was utilized to identify subtype-specific small-molecule compounds. Results: Higher levels of immune infiltration were found in AD individuals and were markedly linked to deregulated ER stress-related genes. The SVM model exhibited the highest AUC (0.879), accuracy (0.808), recall (0.773), and precision (0.809). Six characteristic genes (RNF5, UBAC2, DNAJC10, RNF103, DDX3X, and NGLY1) were determined, which enable to precisely predict AD progression. The SHAP plots illustrated how a feature gene influence the output of the SVM prediction model. Patients with AD could obtain clinical benefits from the feature gene-based nomogram. Two ER stress-related subtypes were defined in AD, subtype2 exhibited elevated immune infiltration levels and immune score, as well as higher expression of immune checkpoint. We finally identified several subtype-specific small-molecule compounds. Conclusion: Our study provides new insights into the role of ER stress in AD heterogeneity and the development of novel targets for individualized treatment in patients with AD.
    Type of Medium: Online Resource
    ISSN: 1663-9812
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2587355-6
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2022
    In:  Arabian Journal of Geosciences Vol. 15, No. 7 ( 2022-04)
    In: Arabian Journal of Geosciences, Springer Science and Business Media LLC, Vol. 15, No. 7 ( 2022-04)
    Type of Medium: Online Resource
    ISSN: 1866-7511 , 1866-7538
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2438771-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...