GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2021
    In:  Bulletin of the American Meteorological Society Vol. 102, No. 5 ( 2021-05), p. E1033-E1063
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 102, No. 5 ( 2021-05), p. E1033-E1063
    Abstract: The inner shelf, the transition zone between the surfzone and the midshelf, is a dynamically complex region with the evolution of circulation and stratification driven by multiple physical processes. Cross-shelf exchange through the inner shelf has important implications for coastal water quality, ecological connectivity, and lateral movement of sediment and heat. The Inner-Shelf Dynamics Experiment (ISDE) was an intensive, coordinated, multi-institution field experiment from September–October 2017, conducted from the midshelf, through the inner shelf, and into the surfzone near Point Sal, California. Satellite, airborne, shore- and ship-based remote sensing, in-water moorings and ship-based sampling, and numerical ocean circulation models forced by winds, waves, and tides were used to investigate the dynamics governing the circulation and transport in the inner shelf and the role of coastline variability on regional circulation dynamics. Here, the following physical processes are highlighted: internal wave dynamics from the midshelf to the inner shelf; flow separation and eddy shedding off Point Sal; offshore ejection of surfzone waters from rip currents; and wind-driven subtidal circulation dynamics. The extensive dataset from ISDE allows for unprecedented investigations into the role of physical processes in creating spatial heterogeneity, and nonlinear interactions between various inner-shelf physical processes. Overall, the highly spatially and temporally resolved oceanographic measurements and numerical simulations of ISDE provide a central framework for studies exploring this complex and fascinating region of the ocean.
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2021
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 50, No. 1 ( 2020-01), p. 111-132
    Abstract: We present observations of shoaling nonlinear internal bores off the coast of central California. The dataset includes 15 moorings deployed during September–October 2017 and cross-shore shipboard surveys. We describe the cross-shore structure and evolution of large-amplitude internal bores as they transit from 9 km (100-m depth) to 1 km offshore (10 m). We observe that two bores arrive each semidiurnal period, both propagating from the southwest; of the total, 72% are tracked to the 10-m isobath. The bore speeds are subtidally modulated, but there is additional bore-to-bore speed variability that is unexplained by the upstream stratification. We quantify temporal and cross-shore variability of the waveguide (the background conditions through which bores propagate) by calculating the linear longwave nonrotating phase speed c o and using the nonlinearity coefficient of the Korteweg–de Vries equation α as a metric for stratification. Bore fronts are generally steeper when α is positive and are more rarefied when α is negative, and we observe the bore’s leading edge to rarefy from a steep front when α is positive offshore and negative inshore. High-frequency α fluctuations, such as those nearshore driven by wind relaxations, contribute to bore-to-bore variability of the cross-shore evolution during similar subtidal waveguide conditions. We compare observed bore speeds with c o and the rotating group velocities c g , concluding that observed speeds are always faster than c g and are slower than c o at depths greater than 32 m and faster than c o at depths of less than 32 m. The bores maintain a steady speed while transiting into shallower water, contrary to linear estimates that predict bores to slow.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2020
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Physical Oceanography, American Meteorological Society, ( 2021-05-14)
    Abstract: Broadly-distributed measurements of velocity, density and turbulence spanning the inner shelf off central California indicate that (i) the average shoreward-directed internal tide energy flux (〈 F E 〉) decreases to near 0 at the 25 m isobath; (ii) the vertically-integrated turbulence dissipation rate (〈 D 〉) is approximately equal to the flux divergence of internal tide energy ( ∂ x 〈 F E 〉); (iii) the ratio of turbulence energy dissipation in the interior relative to the bottom boundary layer (BBL) decreases toward shallow waters; (iv) going inshore, 〈 F E 〉 becomes decorrelated with the incoming internal wave energy flux; and (v) 〈 F E 〉 becomes increasingly correlated with stratification toward shallower water.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2021
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Journal of Physical Oceanography, American Meteorological Society, ( 2021-06-02)
    Abstract: Here, we develop a framework for understanding the observations presented in the accompanying paper (Part I) by Becherer et al. (2021). In this framework, the internal tide saturates as it shoals due to amplitude limitation with decreasing water depth ( H ). From this framework evolves estimates of averaged energetics of the internal tide; specifically, energy, 〈 APE 〉, energy flux, 〈 F E 〉, and energy flux divergence, ∂ x 〈 F E 〉. Since we observe that 〈 D 〉 ≈ ∂ x 〈 F E 〉, we also interpret our estimate of ∂ x 〈 F E 〉 as 〈 D 〉. These estimates represent a parameterization of the energy in the internal tide as it saturates over the inner continental shelf. The parameterization depends solely on depth-mean stratification and bathymetry. A summary result is that the cross-shelf depth dependencies of 〈 APE 〉, 〈 F E 〉 and ∂ x 〈 F E 〉 are analogous to those for shoaling surface gravity waves in the surf zone, suggesting that the inner shelf is the surf zone for the internal tide . A test of our simple parameterization against a range of data sets suggests that it is broadly applicable.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2021
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Meteorological Society ; 2020
    In:  Journal of Physical Oceanography Vol. 50, No. 8 ( 2020-08-01), p. 2373-2391
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 50, No. 8 ( 2020-08-01), p. 2373-2391
    Abstract: The inner shelf is a region inshore of that part of the shelf that roughly obeys Ekman dynamics and offshore of the surf zone. Importantly, this is where surface and bottom boundary layers are in close proximity, overlap, and interact. The internal tide carries a substantial amount of energy into the inner shelf region were it eventually dissipates and contributes to mixing. A part of this energy transformation is due to a complex interaction with the bottom, where distinctions between nonlinear internal waves of depression and elevation are blurred, indeed, where polarity reversals of incoming waves take place. From an intensive set of measurements over the inner shelf off central California, we identify salient differences between onshore pulses from waves with properties of elevation waves and offshore pulses from shallowing depression waves. While the velocity structures and amplitudes of on/offshore pulses 1 m above the seafloor are not detectably different, onshore pulses are both more energetically turbulent and carry more sediments than offshore pulses. Their turbulence is also oppositely skewed: onshore pulses slightly to the leading edges, offshore pulses to the trailing edges of the pulses. We consider in turn three independent mechanisms that may contribute to the observed asymmetry: propagation in adverse pressure gradients and the resultant inflection point instability, residence time of a fluid parcel in the pulse, and turbulence suppression by stratification. The first mechanism may largely explain higher turbulence in the trailing edge of offshore pulses. The extended residence time may be responsible for the high and more uniform turbulence distribution across onshore compared to offshore pulses. Stratification does not play a leading role in turbulence modification inside of the pulses 1 m above the bed.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2020
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 50, No. 10 ( 2020-10-01), p. 2965-2981
    Abstract: Temperature and velocity measurements from 42 moorings were used to investigate the alongshore variability of nonlinear internal bores as they propagated across the central California inner shelf. Moorings were deployed September–October 2017 offshore of the Point Sal headland. Regional coverage was ~30 km alongshore and ~15 km across shore, spanning 9–100-m water depths. In addition to subtidal processes modulating regional stratification, internal bores generated complex spatiotemporal patterns of stratification variability. Internal bores were alongshore continuous on the order of tens of kilometers at the 50-m isobath, but the length scales of frontal continuity decreased to O (1 km) at the 25-m isobath. The depth-averaged, bandpass-filtered (from 3 min to 16 h) internal bore kinetic energy was found to be nonuniform along a bore front, even in the case of an alongshore-continuous bore. The pattern of along-bore variability varied for each bore, but a 2-week average indicated that was generally strongest around Point Sal. The stratification ahead of a bore influenced both the bore’s amplitude and cross-shore evolution. The data suggest that alongshore stratification gradients can cause a bore to evolve differently at various alongshore locations. Three potential bore fates were observed: 1) bores transiting intact to the 9-m isobath, 2) bores being overrun by faster, subsequent bores, leading to bore-merging events, and 3) bores disappearing when the upstream pycnocline was near or below middepth. Maps of hourly stratification at each mooring and the estimated position of sequential bores demonstrated that an individual internal bore can significantly impact the waveguide of the subsequent bore.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2020
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Journal of Physical Oceanography, American Meteorological Society, ( 2021-09-17)
    Abstract: The ocean is home to many different submesoscale phenomena, including internal waves, fronts, and gravity currents. Each of these processes entail complex nonlinear dynamics, even in isolation. Here we present shipboard, moored, and remote observations of a submesoscale gravity current front created by a shoaling internal tidal bore in the coastal ocean. The internal bore is observed to flatten as it shoals, leaving behind a gravity current front that propagates significantly slower than the bore. We posit that the generation and separation of the front from the bore is related to particular stratification ahead of the bore, which allows the bore to reach the maximum possible internal wave speed. After the front is calved from the bore, it is observed to propagate as a gravity current for ≈4 hours, with associated elevated turbulent dissipation rates. A strong cross-shore gradient of along-shore velocity creates enhanced vertical vorticity (Rossby number ≈ 40) that remains locked with the front. Lateral shear instabilities develop along the front and may hasten its demise.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2021
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2021
    In:  Journal of Geophysical Research: Oceans Vol. 126, No. 12 ( 2021-12)
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 126, No. 12 ( 2021-12)
    Abstract: After a wind relaxation, there are two northward propagating signals: an alongshore velocity signal (∼0.7 m/s) and a warm signal (∼0.2 m/s) The warm buoyant plume becomes cooler and thinner as it propagates alongshore, resulting in a weakening of the cross‐front temperature difference The nonuniform propagation velocity of the warm plume is not explained by tidal advection or plume cooling
    Type of Medium: Online Resource
    ISSN: 2169-9275 , 2169-9291
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2021
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 3094219-6
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Meteorological Society ; 2023
    In:  Journal of Atmospheric and Oceanic Technology Vol. 40, No. 9 ( 2023-09), p. 1007-1022
    In: Journal of Atmospheric and Oceanic Technology, American Meteorological Society, Vol. 40, No. 9 ( 2023-09), p. 1007-1022
    Abstract: In 2013 and 2014, multiple field excursions of varying scope were concentrated on the Columbia River, a highly energetic, partially mixed estuary. These experiments included surface drifter and synthetic aperture radar (SAR) measurements during the ONR RIVET-II experiment, and a novel animal tracking effort that samples oceanographic data by employing cormorants tagged with biologging devices. In the present work, several different data types from these experiments were combined in order to test an iterative, ensemble-based inversion methodology at the mouth of the Columbia River (MCR). Results show that, despite inherent limitations of observation and model accuracy, it is possible to detect dynamically relevant bathymetric features such as large shoals and channels while originating from a linear, featureless prior bathymetry in a partially mixed estuary by inverting surface current and gravity wave observations with a 3D hydrostatic ocean model. Bathymetry estimation skill depends on two factors: location (i.e., differing estimation quality inside versus outside the MCR) and observation type (e.g., surface currents versus significant wave height). Despite not being inverted directly, temperature and salinity outputs in the hydrodynamic model improved agreement with observations after bathymetry inversion.
    Type of Medium: Online Resource
    ISSN: 0739-0572 , 1520-0426
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2023
    detail.hit.zdb_id: 2021720-1
    detail.hit.zdb_id: 48441-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Wiley ; 2008
    In:  Marine Mammal Science ( 2008-07), p. ???-???
    In: Marine Mammal Science, Wiley, ( 2008-07), p. ???-???
    Type of Medium: Online Resource
    ISSN: 0824-0469 , 1748-7692
    Language: English
    Publisher: Wiley
    Publication Date: 2008
    detail.hit.zdb_id: 12787-5
    detail.hit.zdb_id: 2218018-7
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...