GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Material
Language
  • 1
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2006
    In:  Journal of Geophysical Research: Oceans Vol. 111, No. C11 ( 2006-11)
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 111, No. C11 ( 2006-11)
    Abstract: This paper synthesizes our understanding of the Arctic's large‐scale freshwater cycle. It combines terrestrial and oceanic observations with insights gained from the ERA‐40 reanalysis and land surface and ice‐ocean models. Annual mean freshwater input to the Arctic Ocean is dominated by river discharge (38%), inflow through Bering Strait (30%), and net precipitation (24%). Total freshwater export from the Arctic Ocean to the North Atlantic is dominated by transports through the Canadian Arctic Archipelago (35%) and via Fram Strait as liquid (26%) and sea ice (25%). All terms are computed relative to a reference salinity of 34.8. Compared to earlier estimates, our budget features larger import of freshwater through Bering Strait and larger liquid phase export through Fram Strait. While there is no reason to expect a steady state, error analysis indicates that the difference between annual mean oceanic inflows and outflows (∼8% of the total inflow) is indistinguishable from zero. Freshwater in the Arctic Ocean has a mean residence time of about a decade. This is understood in that annual freshwater input, while large (∼8500 km 3 ), is an order of magnitude smaller than oceanic freshwater storage of ∼84,000 km 3 . Freshwater in the atmosphere, as water vapor, has a residence time of about a week. Seasonality in Arctic Ocean freshwater storage is nevertheless highly uncertain, reflecting both sparse hydrographic data and insufficient information on sea ice volume. Uncertainties mask seasonal storage changes forced by freshwater fluxes. Of flux terms with sufficient data for analysis, Fram Strait ice outflow shows the largest interannual variability.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2006
    detail.hit.zdb_id: 161666-3
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Earth Interactions, American Meteorological Society, Vol. 28, No. 1 ( 2024-01)
    Abstract: Regional warming and associated changes in hydrologic systems pose challenges to water supply management in river basins of the western United States and call for improved understanding of the spatial and temporal variability of runoff. We apply a network of total width, subannual width, and delta blue intensity tree-ring chronologies in combination with a monthly water balance model to identify droughts and their associated precipitation P and temperature T footprints in the Truckee–Carson River basin (TCRB). Stepwise regression gave reasonably accurate reconstructions, from 1688 to 1999, of seasonal P and T (e.g., R 2 = 0.50 for May–September T ). These were disaggregated to monthly values, which were then routed through a water balance model to generate “indirectly” reconstructed runoff. Reconstructed and observed annual runoff correlate highly ( r = 0.80) from 1906 to 1999. The extended runoff record shows that twentieth-century droughts are unmatched in severity in a 300-yr context. Our water balance modeling reconstruction advances the conventional regression-based dendrochronological methods as it allows for multiple hydrologic components (evapotranspiration, snowmelt, etc.) to be evaluated. We found that imposed warming (3° and 6°C) generally exacerbated the runoff deficits in past droughts but that impact could be lessened and sometimes even reversed in some years by compensating factors, including changes in snow regime. Our results underscore the value of combining multiproxy tree-ring data with water balance modeling to place past hydrologic droughts in the context of climate change. Significance Statement We show how water balance modeling in combination with tree-ring data helps place modern droughts in the context of the past few centuries and a warming climate. Seasonal precipitation and temperature were reconstructed from multiproxy tree-ring data for a mountainous location near Lake Tahoe, and these reconstructions were routed through a water balance model to get a record of monthly runoff, snowmelt, and other water balance variables from 1688 to 1999. The resulting extended annual runoff record highlights the unmatched severity of twentieth-century droughts. A warming of 3°C imposed on reconstructed temperature generally exacerbates the runoff anomalies in past droughts, but this effect is sometimes offset by warming-related changes in the snow regime.
    Type of Medium: Online Resource
    ISSN: 1087-3562
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2024
    detail.hit.zdb_id: 2025258-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Frontiers in Water, Frontiers Media SA, Vol. 3 ( 2021-10-5)
    Abstract: Climate-influenced changes in hydrology affect water-food-energy security that may impact up to two billion people downstream of the High Mountain Asia (HMA) region. Changes in water supply affect energy, industry, transportation, and ecosystems (agriculture, fisheries) and as a result, also affect the region's social, environmental, and economic fabrics. Sustaining the highly interconnected food-energy-water nexus (FEWN) will be a fundamental and increasing challenge under a changing climate regime. High variability in topography and distribution of glaciated and snow-covered areas in the HMA region, and scarcity of high resolution ( in-situ ) data make it difficult to model and project climate change impacts on individual watersheds. We lack basic understanding of the spatial and temporal variations in climate, surface impurities in snow and ice such as black carbon and dust that alter surface albedo, and glacier mass balance and dynamics. These knowledge gaps create challenges in predicting where and when the impact of changes in river flow will be the most significant economically and ecologically. In response to these challenges, the United States National Aeronautics and Space Administration (NASA) established the High Mountain Asia Team (HiMAT) in 2016 to conduct research to address knowledge gaps. This paper summarizes some of the advances HiMAT made over the past 5 years, highlights the scientific challenges in improving our understanding of the hydrology of the HMA region, and introduces an integrated assessment framework to assess the impacts of climate changes on the FEWN for the HMA region. The framework, developed under a NASA HMA project, links climate models, hydrology, hydropower, fish biology, and economic analysis. The framework could be applied to develop scientific understanding of spatio-temporal variability in water availability and the resultant downstream impacts on the FEWN to support water resource management under a changing climate regime.
    Type of Medium: Online Resource
    ISSN: 2624-9375
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2986721-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Wiley ; 2003
    In:  Hydrological Processes Vol. 17, No. 13 ( 2003-09), p. 2521-2539
    In: Hydrological Processes, Wiley, Vol. 17, No. 13 ( 2003-09), p. 2521-2539
    Abstract: A terrestrial hydrological model, developed to simulate the high‐latitude water cycle, is described, along with comparisons with observed data across the pan‐Arctic drainage basin. Gridded fields of plant rooting depth, soil characteristics (texture, organic content), vegetation, and daily time series of precipitation and air temperature provide the primary inputs used to derive simulated runoff at a grid resolution of 25 km across the pan‐Arctic. The pan‐Arctic water balance model (P/WBM) includes a simple scheme for simulating daily changes in soil frozen and liquid water amounts, with the thaw–freeze model (TFM) driven by air temperature, modelled soil moisture content, and physiographic data. Climate time series (precipitation and air temperature) are from the National Centers for Environmental Prediction (NCEP) reanalysis project for the period 1980–2001. P/WBM‐generated maximum summer active‐layer thickness estimates differ from a set of observed data by an average of 12 cm at 27 sites in Alaska, with many of the differences within the variability (1σ) seen in field samples. Simulated long‐term annual runoffs are in the range 100 to 400 mm year −1 . The highest runoffs are found across northeastern Canada, southern Alaska, and Norway, and lower estimates are noted along the highest latitudes of the terrestrial Arctic in North America and Asia. Good agreement exists between simulated and observed long‐term seasonal (winter, spring, summer–fall) runoff to the ten Arctic sea basins ( r = 0·84). Model water budgets are most sensitive to changes in precipitation and air temperature, whereas less affect is noted when other model parameters are altered. Increasing daily precipitation by 25% amplifies annual runoff by 50 to 80% for the largest Arctic drainage basins. Ignoring soil ice by eliminating the TFM sub‐model leads to runoffs that are 7 to 27% lower than the control run. The results of these model sensitivity experiments, along with other uncertainties in both observed validation data and model inputs, emphasize the need to develop improved spatial data sets of key geophysical quantities (particularly climate time series) to estimate terrestrial Arctic hydrological budgets better. Copyright © 2003 John Wiley & Sons, Ltd.
    Type of Medium: Online Resource
    ISSN: 0885-6087 , 1099-1085
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2003
    detail.hit.zdb_id: 57005-9
    detail.hit.zdb_id: 1479953-4
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2001
    In:  Journal of Geophysical Research: Atmospheres Vol. 106, No. D4 ( 2001-02-27), p. 3321-3334
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 106, No. D4 ( 2001-02-27), p. 3321-3334
    Abstract: We describe the contemporary hydrography of the pan‐Arctic land area draining into the Arctic Ocean, northern Bering Sea, and Hudson Bay on the basis of observational records of river discharge and computed runoff. The Regional Arctic Hydrographic Network data set, R‐ArcticNET, is presented, which is based on 3754 recording stations drawn from Russian, Canadian, European, and U.S. archives. R‐ArcticNET represents the single largest data compendium of observed discharge in the Arctic. Approximately 73% of the nonglaciated area of the pan‐Arctic is monitored by at least one river discharge gage giving a mean gage density of 168 gages per 10 6 km 2 . Average annual runoff is 212 mm yr −1 with approximately 60% of the river discharge occurring from April to July. Gridded runoff surfaces are generated for the gaged portion of the pan‐Arctic region to investigate global change signals. Siberia and Alaska showed increases in winter runoff during the 1980s relative to the 1960s and 1970s during annual and seasonal periods. These changes are consistent with observations of change in the climatology of the region. Western Canada experienced decreased spring and summer runoff.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2001
    detail.hit.zdb_id: 161666-3
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2012
    In:  Population and Environment Vol. 33, No. 4 ( 2012-6), p. 269-283
    In: Population and Environment, Springer Science and Business Media LLC, Vol. 33, No. 4 ( 2012-6), p. 269-283
    Type of Medium: Online Resource
    ISSN: 0199-0039 , 1573-7810
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2012
    detail.hit.zdb_id: 2018639-3
    detail.hit.zdb_id: 225002-0
    SSG: 3,4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Informa UK Limited ; 2011
    In:  Polar Geography Vol. 34, No. 1-2 ( 2011-03), p. 107-123
    In: Polar Geography, Informa UK Limited, Vol. 34, No. 1-2 ( 2011-03), p. 107-123
    Type of Medium: Online Resource
    ISSN: 1088-937X , 1939-0513
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 2011
    detail.hit.zdb_id: 752241-1
    detail.hit.zdb_id: 2122896-6
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Environmental Research Letters, IOP Publishing, Vol. 11, No. 8 ( 2016-08-01), p. 084005-
    Type of Medium: Online Resource
    ISSN: 1748-9326
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2016
    detail.hit.zdb_id: 2255379-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Environmental Research Letters, IOP Publishing, Vol. 16, No. 8 ( 2021-08-01), p. 084054-
    Abstract: Observations show increases in river discharge to the Arctic Ocean especially in winter over the last decades but the physical mechanisms driving these changes are not yet fully understood. We hypothesize that even in the absence of a precipitation increase, permafrost degradation alone can lead to increased annual river runoff. To test this hypothesis we perform 12 millennium-long simulations over an idealized hypothetical watershed (1 km 2 ) using a distributed, physically based water balance model (Water flow and Balance Simulation Model, WaSiM). The model is forced by both a hypothetical warming defined by an air temperature increase of 7.5 ∘ C over 100 years, and a corresponding cooling scenario. To assess model sensitivity we vary soil saturated hydraulic conductivity and lateral subsurface flow configuration. Under the warming scenario, changes in subsurface water transport due to ground temperature changes result in a 7%–14% increase in annual runoff accompanied by a 6%–20% decrease in evapotranspiration. The increase in runoff is most pronounced in winter. Hence, the simulations demonstrate that changes in permafrost characteristics due to climate warming and associated changes in evapotranspiration provide a plausible mechanism for the observed runoff increases in Arctic watersheds. In addition, our experiments show that when lateral subsurface moisture transport is not included, as commonly done in global-scale Earth System Models, the equilibrium water balance in response to the warming or cooling is similar to the water balance in simulations where lateral subsurface transport is included. However, the transient changes in water balance components prior to reaching equilibrium differ greatly between the two. For example, for high saturated hydraulic conductivity only when lateral subsurface transport is considered, a period of decreased runoff occurs immediately after the warming. This period is characterized by a positive change in soil moisture storage caused by the soil moisture deficit developed during prior cooling.
    Type of Medium: Online Resource
    ISSN: 1748-9326
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2021
    detail.hit.zdb_id: 2255379-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Environmental Research Letters, IOP Publishing, Vol. 12, No. 10 ( 2017-10-01), p. 104009-
    Type of Medium: Online Resource
    ISSN: 1748-9326
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2017
    detail.hit.zdb_id: 2255379-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...