GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of the American Society for Mass Spectrometry, American Chemical Society (ACS), Vol. 31, No. 3 ( 2020-03-04), p. 742-751
    Type of Medium: Online Resource
    ISSN: 1044-0305 , 1879-1123
    Language: English
    Publisher: American Chemical Society (ACS)
    Publication Date: 2020
    detail.hit.zdb_id: 1073671-2
    detail.hit.zdb_id: 2019911-9
    detail.hit.zdb_id: 2004476-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2020
    In:  Neuro-Oncology Vol. 22, No. Supplement_3 ( 2020-12-04), p. iii412-iii412
    In: Neuro-Oncology, Oxford University Press (OUP), Vol. 22, No. Supplement_3 ( 2020-12-04), p. iii412-iii412
    Abstract: Pediatric brain tumors harboring amplifications or high overexpression of MYC-/MYCN are often associated with poor outcome. High MYC(N) expression in these tumors leads to increased transcription, which can be in conflict with DNA replication and subsequently can cause replication stress, R-loops and DNA damage. We hypothesize that high MYC(N) expression makes them vulnerable to DNA damage response inhibitors (DDRi) and even more vulnerable to combinations of DDRi and chemotherapeutics. To test this hypothesis we performed in vitro drug experiments using Group 3 medulloblastoma (MB) and ETMR cell lines. IC50-values were evaluated of topoisomerase inhibitor Irinotecan (SN-38) and Pamiparib (BGB-290), a brain-penetrant PARP-inhibitor, in monotherapy. All cell lines were sensitive for SN-38 and showed IC50-values in the low nM-range but PARP-inhibitors were ineffective. However, a significant decrease in IC50 can be observed when SN-38 and Pamiparib are used in combination. For in vivo treatments, we injected NSG mice with luciferase labelled patient-derived xenograft- (PDX-) cells of various models (MB Group 3, MB SHH, ETMR, RELA EPN), monitored tumor growth via IVIS and randomized the mice into four groups (vehicle, BGB-290, Irinotecan and Irinotecan+Pamiparib) when a predefined threshold of tumor growth was reached. Mice were treated with Irinotecan (or vehicle) once per day i.p. and Pamiparib (or vehicle) twice per day per oral gavage. Treatment with Pamiparib did not show any survival benefit, but mice treated with Irinotecan or the combination showed a clear survival benefit. Treatments are ongoing and more results will be presented at the conference.
    Type of Medium: Online Resource
    ISSN: 1522-8517 , 1523-5866
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2020
    detail.hit.zdb_id: 2094060-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: JAMA, American Medical Association (AMA), Vol. 329, No. 22 ( 2023-06-13), p. 1934-
    Abstract: SARS-CoV-2 infection is associated with persistent, relapsing, or new symptoms or other health effects occurring after acute infection, termed postacute sequelae of SARS-CoV-2 infection (PASC), also known as long COVID . Characterizing PASC requires analysis of prospectively and uniformly collected data from diverse uninfected and infected individuals. Objective To develop a definition of PASC using self-reported symptoms and describe PASC frequencies across cohorts, vaccination status, and number of infections. Design, Setting, and Participants Prospective observational cohort study of adults with and without SARS-CoV-2 infection at 85 enrolling sites (hospitals, health centers, community organizations) located in 33 states plus Washington, DC, and Puerto Rico. Participants who were enrolled in the RECOVER adult cohort before April 10, 2023, completed a symptom survey 6 months or more after acute symptom onset or test date. Selection included population-based, volunteer, and convenience sampling. Exposure SARS-CoV-2 infection. Main Outcomes and Measures PASC and 44 participant-reported symptoms (with severity thresholds). Results A total of 9764 participants (89% SARS-CoV-2 infected; 71% female; 16% Hispanic/Latino; 15% non-Hispanic Black; median age, 47 years [IQR, 35-60]) met selection criteria. Adjusted odds ratios were 1.5 or greater (infected vs uninfected participants) for 37 symptoms. Symptoms contributing to PASC score included postexertional malaise, fatigue, brain fog, dizziness, gastrointestinal symptoms, palpitations, changes in sexual desire or capacity, loss of or change in smell or taste, thirst, chronic cough, chest pain, and abnormal movements. Among 2231 participants first infected on or after December 1, 2021, and enrolled within 30 days of infection, 224 (10% [95% CI, 8.8%-11%] ) were PASC positive at 6 months. Conclusions and Relevance A definition of PASC was developed based on symptoms in a prospective cohort study. As a first step to providing a framework for other investigations, iterative refinement that further incorporates other clinical features is needed to support actionable definitions of PASC.
    Type of Medium: Online Resource
    ISSN: 0098-7484
    RVK:
    Language: English
    Publisher: American Medical Association (AMA)
    Publication Date: 2023
    detail.hit.zdb_id: 2958-0
    detail.hit.zdb_id: 2018410-4
    SSG: 5,21
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 11, No. 1 ( 2020-09-21)
    Abstract: The immune system can recognize and attack cancer cells, especially those with a high load of mutation-induced neoantigens. Such neoantigens are abundant in DNA mismatch repair (MMR)-deficient, microsatellite-unstable (MSI) cancers. MMR deficiency leads to insertion/deletion (indel) mutations at coding microsatellites (cMS) and to neoantigen-inducing translational frameshifts. Here, we develop a tool to quantify frameshift mutations in MSI colorectal and endometrial cancer. Our results show that frameshift mutation frequency is negatively correlated to the predicted immunogenicity of the resulting peptides, suggesting counterselection of cell clones with highly immunogenic frameshift peptides. This correlation is absent in tumors with Beta-2-microglobulin mutations, and HLA-A*02:01 status is related to cMS mutation patterns. Importantly, certain outlier mutations are common in MSI cancers despite being related to frameshift peptides with functionally confirmed immunogenicity, suggesting a possible driver role during MSI tumor evolution. Neoantigens resulting from shared mutations represent promising vaccine candidates for prevention of MSI cancers.
    Type of Medium: Online Resource
    ISSN: 2041-1723
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2553671-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Nature, Springer Science and Business Media LLC, Vol. 576, No. 7786 ( 2019-12-12), p. 274-280
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 78, No. 13_Supplement ( 2018-07-01), p. 3172-3172
    Abstract: Embryonal Tumors with Multilayered Rosettes (ETMRs) are pediatric brain tumors mainly occurring in infants. Characteristic to ETMRs is the highly recurrent (~90%) amplification of the C19MC miRNA cluster fused to TTYH1 that drives the expression of this cluster. As the overall survival of these patients is very poor, there is an urgent need for a better understanding of these tumors that may lead to other treatment strategies. Whole genome and panel sequencing data have been generated for 60 ETMRs and matching germline when available. Data have been complemented with DNA methylation profiling and m(i)RNA sequencing data. Our results show that ETMR is a single disease entity without molecular subgroups. ETMRs lacking the C19MC amplification (~10%) are highly similar to tumors with C19MC amplification, based on methylation and m(i)RNA profiling, indicating that they do not represent a distinct subgroup. Germline sequencing revealed mutations in genes involved in DNA repair or miRNA processing, while tumor specific mutations included genes involved in the TP53-, SHH-, WNT-, or miRNA processing pathways. These pathways are also highly upregulated compared to other pediatric brain tumors. Mutations in DNA repair, miRNA processing, structural variations (SVs) and mutations in close proximity of SVs occur at high allele frequencies and are conserved in recurrent tumors while many other SNVs are lost. These data suggest that C19MC amplification/fusion, miRNA processing and DNA repair defects are the early (driving) events in tumor formation while aberrations involving for instance the SHH and WNT pathways are later (passenger) events. Aside from frequent and recurrent copy number changes, ETMRs show pluriploidy, complex rearrangements and strong presence of R-loops suggesting that ETMR genomes are highly unstable. We identified a high number of R-loops in the region forming the C19MC aberration and an enrichment of breakpoints in other R-loop forming regions. This may suggest a role for R-loops in both tumor progression and initiation. Finally, we tested whether further inducing the number of R-loops in these tumors may increase replication stress and cell death. Indeed, topoisomerase inhibition coupled to PARP inhibition increased the amount of R-loops and acted synergistically in killing ETMR cells. These data show that targeting the genomic instability in ETMRs could be a viable treatment option for treating ETMR patients. Citation Format: Sander Lambo, Andrey Korshunov, Christin Schmidt, Carolina Romero, Aparna Gorthi, Sonja Krausert, Tobias Rausch, Susanne Gröbner, Sebastian Brabetz, Sebastian Waszak, Alexander J. Bishop, Stefan Pfister, Marcel Kool. Targeting genomic instability in embryonal tumors with multilayered rosettes (ETMR) [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2018;78(13 Suppl):Abstract nr 3172.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2018
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2022
    In:  Neuro-Oncology Vol. 24, No. Supplement_1 ( 2022-06-03), p. i168-i168
    In: Neuro-Oncology, Oxford University Press (OUP), Vol. 24, No. Supplement_1 ( 2022-06-03), p. i168-i168
    Abstract: Previously, we have found that Embryonal Tumors with Multilayered Rosettes (ETMR) tumor cells harboring high levels of R-loops, a potential marker for replication stress and genomic instability, are vulnerable to a combination of topoisomerase and PARP inhibitors. To follow up on this, we investigated whether other pediatric brain tumor types with high levels of R-loops, such as MYC-amplified Group 3 medulloblastoma (MB) and ZFTA-fusion positive ependymoma, are also sensitive to these inhibitors. First, we performed in vitro drug screens using HD-MB03, a Group 3 MB cell line, and the ETMR cell line BT183, and in both screens PARP inhibitors were identified as the most synergistic combination partners for the topoisomerase inhibitor Irinotecan, respectively the active metabolite SN-38. Normal Astrocytes were not sensitive to these combinations. Secondly, we performed in vivo studies using patient-derived xenograft (PDX) models injected subcutaneously or intracranially into NSG mice, and treated with the PARP inhibitor Pamiparib, Irinotecan or a combination of both. For a MYC-amplified Group 3 MB and a ZFTA-fusion positive Ependymoma model, both injected intracranially, treatment with Irinotecan or the combination led to a significant survival benefit and inhibition of tumor growth including transient tumor shrinkage, but addition of Pamiparib did not add any further benefit in vivo, even though intratumoral PARP was inhibited by at least 80%. In contrast, in the subcutaneously injected ETMR model, the combination treatment with Irinotecan and Pamiparib led to a synergistic effect and complete regression of the tumors. Further refinements of the treatment strategy as dose adaptations and the use of a pegylated version of SN-38 (PLX038A) did also not induce a synergistic effect of the drugs for the intracranial tumors. Additional in vivo studies to evaluate the differences in efficacy and whether these are tumor specific or due to incomplete brain penetrance of the drugs are ongoing.
    Type of Medium: Online Resource
    ISSN: 1522-8517 , 1523-5866
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 2094060-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Neuro-Oncology, Oxford University Press (OUP), Vol. 24, No. Supplement_1 ( 2022-06-03), p. i73-i73
    Abstract: Pediatric high-grade gliomas (pHGG) account for approximately 12% of pediatric brain tumors. Despite advances in molecular diagnosis and identification of discrete molecular subtypes, pHGG are the leading cause of cancer-related death in children. Thus, current research focuses on identifying novel therapeutic targets. Sequencing analyses across pediatric cancer types identified DNA repair perturbations as potentially targetable events in certain types of pediatric brain tumors. Herein, we investigated the potential of PARP inhibitors (PARPi), impeding the central role of PARP in DNA damage repair, in pHGG. We screened a patient-derived primary pHGG cell line panel (n=7) for their sensitivity towards 6 different PARPi (niraparib, olaparib, pamiparib, rucaparib, talazoparib, veliparib) using cell viability assays. Basal expression of DNA repair related proteins was assessed by immunoblot, and propidium iodide-based flow cytometry was used for cell cycle analysis. All pHGG were resistant towards single compound PARP inhibition. Interestingly, two H3F3A-G34R mutant pHGG models harboring inactivating ATRX mutations were characterized by elevated basal levels of pH2AX, suggesting increased stress resulting from DNA damage. Consequently, simultaneous targeting of PARP and other components of DNA repair in the respective models showed strong synergistic effects on cell viability, which was not observed to a comparable extent in other models such as BRAFV600E/TERT promotor mutant pHGG. Combination of talazoparib and irinotecan resulted in S-phase arrest. Within a precision oncology approach, we treated a 11-year-old child suffering from H3F3A-G34R mutant pHGG with ATRX mutation, that progressed during radiation, with niraparib and topotecan. The patient achieved partial remission and disease stabilization for 1 year. Taken together, PARPi combinations show potential for the treatment of pHGG with ATRX mutations. Currently, all cell models are characterized for DNA repair signatures by DNA sequencing. Further, in depth characterization of DNA damage responses upon concomitant PARP and topoisomerase inhibition in ATRX-mutated pHGG are ongoing.
    Type of Medium: Online Resource
    ISSN: 1522-8517 , 1523-5866
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 2094060-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: European Journal of Cancer, Elsevier BV, Vol. 162 ( 2022-02), p. 107-117
    Type of Medium: Online Resource
    ISSN: 0959-8049
    RVK:
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2022
    detail.hit.zdb_id: 1120460-6
    detail.hit.zdb_id: 1468190-0
    detail.hit.zdb_id: 82061-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 14_Supplement ( 2020-07-15), p. A39-A39
    Abstract: Introduction: Embryonal tumors with multilayered rosettes (ETMRs) are aggressive brain tumors that occur mainly in infants. Patients face a very poor prognosis with a median overall survival of ~12 months after diagnosis. The tumors harbor in ~90% of all cases amplification of a miRNA cluster on chromosome 19 (C19MC) that is thought to be the driver of the disease. However, current treatment options are lacking as (a) the mechanisms downstream of C19MC are poorly understood and (b) the drivers in cases lacking the C19MC aberration are unknown. To develop better treatment protocols for ETMR patients, more insight is needed in what is driving these tumors and how that can be targeted. Materials and Methods: To investigate the genomic and epigenomic landscape of ETMR in depth, we collected 193 ETMR samples and 23 matched relapses and performed DNA methylation profiling on all and DNA (whole genome, whole exome, and panel) sequencing and mRNA and miRNA transcriptome analysis on a subset of them. The BT183 ETMR cell line was used for drug treatments. Results: Among the 22 tumors without C19MC amplification, we identified 8 cases with truncating DICER1 germline mutations in one allele and somatic missense mutations in the RNASE III domain in the other allele. No DICER1 mutations were identified in C19MC amplified cases. In addition, structural variations (SVs) affecting C19MC were found in 3 other C19MC nonamplified cases and amplification of another miRNA cluster, miR-17-92, in 2 other cases. However, despite the presence of different genetic aberrations, based on DNA methylation and transcriptome profiling no molecular subgrouping was observed within our cohort. Whole-genome sequencing revealed an overall low recurrence and conservation of SNVs but strong conservation of SVs from primary tumors to relapses, especially surrounding C19MC. Moreover, many newly acquired SNVs in the relapses are associated to a new cisplatin treatment-related mutational signature. SVs detected in ETMRs significantly colocalized with R-loops, structures that form upon a collision of replication and transcription and are associated to increased levels of chromosomal instability, which is frequently observed in ETMRs. Using a DICER1 KO model, we found that global deregulation of miRNAs led to increased levels of R-loops and R-loop associated chromosomal instability. Finally, we show that a combination of topoisomerase and PARP inhibitors is highly synergistic and strongly increased the levels of both R-loops and DNA damage in ETMR cells and effectively killed the cells. Conclusions: Our results show that genomically instable ETMR cells are vulnerable to further increases in chromosomal instability, knowledge that may lead to new treatment strategies for ETMR patients and possibly other cancers with high levels of R-loops. Citation Format: Sander Lambo, Susanne Grübner, Tobias Rausch, Sebastian Waszak, Christin Schmidt, Sonja Krausert, Loreen Weichert, Aparna Gorthi, Carolina Romero, Annie Huang, Julia Schueler, Jan Korbel, Alexander Bishop, Stefan Pfister, Andrey Korshunov, Marcel Kool. Molecular characterization of ETMRs reveals role for R-loop mediated genomic instability and new treatment options [abstract]. In: Proceedings of the AACR Special Conference on the Advances in Pediatric Cancer Research; 2019 Sep 17-20; Montreal, QC, Canada. Philadelphia (PA): AACR; Cancer Res 2020;80(14 Suppl):Abstract nr A39.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...