GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2010
    In:  Monthly Weather Review Vol. 138, No. 12 ( 2010-12-01), p. 4439-4455
    In: Monthly Weather Review, American Meteorological Society, Vol. 138, No. 12 ( 2010-12-01), p. 4439-4455
    Abstract: Finescale single- and dual-Doppler observations are used to diagnose the three-dimensional structure of the wind field surrounding a tornado that occurred near the town of Orleans, Nebraska, on 22 May 2004. The evolution of the vorticity and divergence fields and other structures near the tornado are documented in the lowest kilometer. Changes in tornado intensity are compared to the position of the tornado relative to primary and secondary gust fronts. Circulation on scales of a few kilometers surrounding the tornado remains relatively constant during the analysis period, which spans the intensifying and mature periods of the tornado’s life cycle. Stretching of vertical vorticity and tilting of horizontal vorticity are diagnosed, but the latter is near or below the threshold of detectability in this analysis during the observation period in the analyzed domain. Low-level circulation within 500 m of the tornado increased several minutes before vortex-relative and ground-relative near-surface wind speeds in the tornado increased, raising the possibility that such trends in circulation may be useful in forecasting tornado intensification.
    Type of Medium: Online Resource
    ISSN: 1520-0493 , 0027-0644
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2010
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 98, No. 4 ( 2017-04-01), p. 767-786
    Abstract: The central Great Plains region in North America has a nocturnal maximum in warm-season precipitation. Much of this precipitation comes from organized mesoscale convective systems (MCSs). This nocturnal maximum is counterintuitive in the sense that convective activity over the Great Plains is out of phase with the local generation of CAPE by solar heating of the surface. The lower troposphere in this nocturnal environment is typically characterized by a low-level jet (LLJ) just above a stable boundary layer (SBL), and convective available potential energy (CAPE) values that peak above the SBL, resulting in convection that may be elevated, with source air decoupled from the surface. Nocturnal MCS-induced cold pools often trigger undular bores and solitary waves within the SBL. A full understanding of the nocturnal precipitation maximum remains elusive, although it appears that bore-induced lifting and the LLJ may be instrumental to convection initiation and the maintenance of MCSs at night. To gain insight into nocturnal MCSs, their essential ingredients, and paths toward improving the relatively poor predictive skill of nocturnal convection in weather and climate models, a large, multiagency field campaign called Plains Elevated Convection At Night (PECAN) was conducted in 2015. PECAN employed three research aircraft, an unprecedented coordinated array of nine mobile scanning radars, a fixed S-band radar, a unique mesoscale network of lower-tropospheric profiling systems called the PECAN Integrated Sounding Array (PISA), and numerous mobile-mesonet surface weather stations. The rich PECAN dataset is expected to improve our understanding and prediction of continental nocturnal warm-season precipitation. This article provides a summary of the PECAN field experiment and preliminary findings.
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2017
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2022
    In:  Journal of Geophysical Research: Atmospheres Vol. 127, No. 17 ( 2022-09-16)
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 127, No. 17 ( 2022-09-16)
    Abstract: Misovortices had preferred locations with respect to lake‐effect band centers during the Ontario Winter Lake‐effect Systems (OWLeS) project Most long lake‐axis‐parallel lake‐effect storms during the OWLeS project had embedded horizontal shear zones leading to misocyclogenesis A hypothesis relating these shear zones and their associated misovortices to previously identified low‐level boundaries was not supported
    Type of Medium: Online Resource
    ISSN: 2169-897X , 2169-8996
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2022
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 2969341-X
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Meteorological Society ; 2015
    In:  Bulletin of the American Meteorological Society Vol. 96, No. 12 ( 2015-12-01), p. 2167-2181
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 96, No. 12 ( 2015-12-01), p. 2167-2181
    Abstract: A National Science Foundation sponsored educational deployment of a Doppler on Wheels radar called the Hawaiian Educational Radar Opportunity (HERO) was conducted on O‘ahu from 21 October to 13 November 2013. This was the first-ever deployment of a polarimetric X-band (3 cm) research radar in Hawaii. A unique fine-resolution radar and radiosonde dataset was collected during 16 intensive observing periods through a collaborative effort between University of Hawai‘i at Mānoa undergraduate and graduate students and the National Weather Service’s Weather Forecast Office in Honolulu. HERO was the field component of MET 628 “Radar Meteorology,” with 12 enrolled graduate students who collected and analyzed the data as part of the course. Extensive community outreach was conducted, including participation in a School of Ocean and Earth Science and Technology open house event with over 7,500 visitors from local K–12 schools and the public. An overview of the HERO project and highlights of some interesting tropical rain and cloud observations are described. Phenomena observed by the radar include cumulus clouds, trade wind showers, deep convective thunderstorms, and a widespread heavy rain event associated with a cold frontal passage. Detailed cloud and precipitation structures and their interactions with O‘ahu terrain, unique dual-polarization signatures, and the implications for the dynamics and microphysics of tropical convection are presented.
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2015
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Meteorological Society ; 2012
    In:  Bulletin of the American Meteorological Society ( 2012-11-12), p. 130109100058001-
    In: Bulletin of the American Meteorological Society, American Meteorological Society, ( 2012-11-12), p. 130109100058001-
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2012
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Monthly Weather Review, American Meteorological Society, Vol. 142, No. 2 ( 2014-02-01), p. 530-554
    Abstract: High-resolution Doppler radar velocities and in situ surface observations collected in a tornadic supercell on 5 June 2009 during the second Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX2) are assimilated into a simulated convective storm using an ensemble Kalman filter (EnKF). A series of EnKF experiments using a 1-km horizontal model grid spacing demonstrates the sensitivity of the cold pool and kinematic structure of the storm to the assimilation of these observations and to different model microphysics parameterizations. An experiment is performed using a finer grid spacing (500 m) and the most optimal data assimilation and model configurations from the sensitivity tests to produce a realistically evolving storm. Analyses from this experiment are verified against dual-Doppler and in situ observations and are evaluated for their potential to confidently evaluate mesocyclone-scale processes in the storm using trajectory analysis and calculations of Lagrangian vorticity budgets. In Part II of this study, these analyses will be further evaluated to learn the roles that mesocyclone-scale processes play in tornado formation, maintenance, and decay. The coldness of the simulated low-level outflow is generally insensitive to the choice of certain microphysical parameterizations, likely owing to the vast quantity of kinematic and in situ thermodynamic observations assimilated. The three-dimensional EnKF wind fields and parcel trajectories resemble those retrieved from dual-Doppler observations within the storm, suggesting that realistic four-dimensional mesocyclone-scale processes are captured. However, potential errors are found in trajectories and Lagrangian three-dimensional vorticity budget calculations performed within the mesocyclone that may be due to the coarse (2 min) temporal resolution of the analyses. Therefore, caution must be exercised when interpreting trajectories in this area of the storm.
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2014
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Meteorological Society ; 2016
    In:  Monthly Weather Review Vol. 144, No. 9 ( 2016-09), p. 3201-3231
    In: Monthly Weather Review, American Meteorological Society, Vol. 144, No. 9 ( 2016-09), p. 3201-3231
    Abstract: On 10 June 2010, the second Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX2) armada collected a rare set of observations of a nontornadic and a tornadic supercell evolving in close proximity to each other. The storms and their environments were analyzed using single- and dual-Doppler radar, mobile mesonet, deployable surface mesonet, and mobile sounding data, with the goal of understanding why one supercell produced no tornadoes while the other produced at least two. Outflow temperature deficits were similar for the two storms, both within the normal range for weakly tornadic supercells but somewhat cold relative to significantly tornadic supercells. The storms formed in a complex environment, with slightly higher storm-relative helicity near the tornadic supercell. The environment evolved significantly in time, with large thermodynamic changes and increases in storm-relative helicity, leading to conditions much more favorable for tornadogenesis. After a few hours, a new storm developed between the supercells, likely leading to the demise of the nontornadic supercell before it was able to experience the enhanced environmental conditions. Two tornadoes developed within the single mesocyclone of the other supercell. After the dissipation of the second tornado, rapid rearward motion of low- to midlevel circulations may have inhibited further tornado production in this storm.
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2016
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Meteorological Society ; 2017
    In:  Monthly Weather Review Vol. 145, No. 8 ( 2017-08), p. 3265-3291
    In: Monthly Weather Review, American Meteorological Society, Vol. 145, No. 8 ( 2017-08), p. 3265-3291
    Abstract: Recent lake-effect snow field projects in the eastern Great Lakes region have revealed the presence of misovortices with diameters between 40 and 4000 m along cyclonic horizontal shear zones within long-lake-axis-parallel bands. One particular band in which an abundance of misovortices developed occurred on 7 January 2014. The leading hypothesis for lake-effect misovortexgenesis is the release of horizontal shearing instability (HSI). An analysis of three-dimensional dual-Doppler wind syntheses reveals that two criteria for HSI are satisfied along the horizontal shear zone, strongly suggesting that HSI was the likely cause of the misovortices in this case. Furthermore, the general lack of anticyclonic–cyclonic vortex couplets throughout the event reveal that tilting of horizontal vorticity into the vertical is of less importance compared to the release of HSI and subsequent strengthening via vortex stretching. A WRF simulation depicts misovortices along the horizontal shear zone within the simulated band. The simulated vortices display remarkable similarities to the observed vortices in terms of intensity, depth, spacing, and size. The simulated vortices persist over the eastern end of the lake; however, once the vortices move inland, they quickly dissipate. HSI criteria are also calculated from the WRF simulation and are satisfied along the shear zone. Competing hypotheses of misovortexgenesis are presented, with results indicating that the release of HSI is the likely mechanism of vortex formation.
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2017
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 102, No. 9 ( 2021-09), p. E1756-E1785
    Abstract: Extensive expansion in irrigated agriculture has taken place over the last half century. Due to increased irrigation and resultant land-use–land-cover change, the central United States has seen a decrease in temperature and changes in precipitation during the second half of the twentieth century. To investigate the impacts of widespread commencement of irrigation at the beginning of the growing season and continued irrigation throughout the summer on local and regional weather, the Great Plains Irrigation Experiment (GRAINEX) was conducted in the spring and summer of 2018 in southeastern Nebraska. GRAINEX consisted of two 15-day intensive observation periods. Observational platforms from multiple agencies and universities were deployed to investigate the role of irrigation in surface moisture content, heat fluxes, diurnal boundary layer evolution, and local precipitation. This article provides an overview of the data collected and an analysis of the role of irrigation in land–atmosphere interactions on time scales from the seasonal to the diurnal. The analysis shows that a clear irrigation signal was apparent during the peak growing season in mid-July. This paper shows the strong impact of irrigation on surface fluxes, near-surface temperature and humidity, and boundary layer growth and decay.
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2021
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Meteorological Society ; 2018
    In:  Monthly Weather Review Vol. 146, No. 3 ( 2018-03), p. 713-722
    In: Monthly Weather Review, American Meteorological Society, Vol. 146, No. 3 ( 2018-03), p. 713-722
    Abstract: Strong hurricanes cause severe, but highly variable, wind damage to homes and community infrastructure. It has been speculated, but not previously shown, that damage variability is caused by tornadoes or other small-scale phenomena. Here, the authors present the first mapping and tracking of persistent tornado-scale vortices (TSVs) in the eyewall and the first documentation of the likely role of eyewall mesovortices (MVs) and TSVs in enhancing surface winds and damage. Unprecedented finescale observations in the eyewall of Hurricane Harvey (2017) were obtained by a Doppler on Wheels (DOW) radar deployed inside the eye. These observations reveal several persistent eyewall MVs revolving about the eye, as well as superimposed subkilometer-scale TSVs. Wind field perturbations associated with TSVs and MVs are less than those typical in supercell tornadoes, but since they are embedded in strong background eyewall flow, they are likely responsible for the enhancement of surface wind gusts and significant damage, including destroyed buildings and lofted vehicles. Potential climate change may result in more frequent intense and/or rapidly intensifying hurricanes; thus, understanding and forecasting the causes of hurricane wind damage is a high priority.
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2018
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...