GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: BMC Ecology and Evolution, Springer Science and Business Media LLC, Vol. 21, No. 1 ( 2021-11-05)
    Abstract: Ecosystem restoration is as a critical tool to counteract the decline of biodiversity and recover vital ecosystem services. Restoration efforts, however, often fall short of meeting their goals. Although functionally important levels of biodiversity can significantly contribute to the outcome of ecosystem restoration, they are often overlooked. One such important facet of biodiversity is within-species genetic diversity, which is fundamental to population fitness and adaptation to environmental change. Also the diversity of arbuscular mycorrhizal fungi (AMF), obligate root symbionts that regulate nutrient and carbon cycles, potentially plays a vital role in mediating ecosystem restoration outcome. In this study, we investigated the relative contribution of intraspecific population genetic diversity, AMF diversity, and their interaction, to population recovery of Succisa pratensis , a key species of nutrient poor semi natural grasslands. We genotyped 180 individuals from 12 populations of S. pratensis and characterized AMF composition in their roots, using microsatellite markers and next generation amplicon sequencing, respectively. We also investigated whether the genetic makeup of the host plant species can structure the composition of root-inhabiting AMF communities. Results Our analysis revealed that population allelic richness was strongly positively correlated to relative population growth, whereas AMF richness and its interaction with population genetic diversity did not significantly contribute. The variation partitioning analysis showed that, after accounting for soil and spatial variables, the plant genetic makeup explained a small but significant part of the unique variation in AMF communities. Conclusions Our results confirm that population genetic diversity can contribute to population recovery, highlighting the importance of within-species genetic diversity for the success of restoration. We could not find evidence, however, that population recovery benefits from the presence of more diverse AMF communities. Our analysis also showed that the genetic makeup of the host plant structured root-inhabiting AMF communities, suggesting that the plant genetic makeup may be linked to genes that control symbiosis development.
    Type of Medium: Online Resource
    ISSN: 2730-7182
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 3053924-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Frontiers in Plant Science, Frontiers Media SA, Vol. 14 ( 2023-1-20)
    Abstract: Our knowledge of microbial biogeography has advanced in recent years, yet we lack knowledge of the global diversity of some important functional groups. Here, we used environmental DNA from 327 globally collected soil samples to investigate the biodiversity patterns of nitrogen-fixing bacteria by focusing on the nif H gene but also amplifying the general prokaryotic 16S SSU region. Globally, N-fixing prokaryotic communities are driven mainly by climatic conditions, with most groups being positively correlated with stable hot or seasonally humid climates. Among soil parameters, pH, but also soil N content were most often shown to correlate with the diversity of N-fixer groups. However, specific groups of N-fixing prokaryotes show contrasting responses to the same variables, notably in Cyanobacteria that were negatively correlated with stable hot climates, and showed a U-shaped correlation with soil pH, contrary to other N-fixers. Also, the non-N-fixing prokaryotic community composition was differentially correlated with the diversity and abundance of N-fixer groups, showing the often-neglected impact of biotic interactions among bacteria.
    Type of Medium: Online Resource
    ISSN: 1664-462X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2687947-5
    detail.hit.zdb_id: 2613694-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Frontiers Media SA ; 2023
    In:  Frontiers in Plant Science Vol. 14 ( 2023-9-27)
    In: Frontiers in Plant Science, Frontiers Media SA, Vol. 14 ( 2023-9-27)
    Type of Medium: Online Resource
    ISSN: 1664-462X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2687947-5
    detail.hit.zdb_id: 2613694-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Frontiers in Plant Science, Frontiers Media SA, Vol. 14 ( 2023-4-18)
    Abstract: Traditional approaches to collecting large-scale biodiversity data pose huge logistical and technical challenges. We aimed to assess how a comparatively simple method based on sequencing environmental DNA (eDNA) characterises global variation in plant diversity and community composition compared with data derived from traditional plant inventory methods. Methods We sequenced a short fragment (P6 loop) of the chloroplast trnL intron from from 325 globally distributed soil samples and compared estimates of diversity and composition with those derived from traditional sources based on empirical (GBIF) or extrapolated plant distribution and diversity data. Results Large-scale plant diversity and community composition patterns revealed by sequencing eDNA were broadly in accordance with those derived from traditional sources. The success of the eDNA taxonomy assignment, and the overlap of taxon lists between eDNA and GBIF, was greatest at moderate to high latitudes of the northern hemisphere. On average, around half (mean: 51.5% SD 17.6) of local GBIF records were represented in eDNA databases at the species level, depending on the geographic region. Discussion eDNA trnL gene sequencing data accurately represent global patterns in plant diversity and composition and thus can provide a basis for large-scale vegetation studies. Important experimental considerations for plant eDNA studies include using a sampling volume and design to maximise the number of taxa detected and optimising the sequencing depth. However, increasing the coverage of reference sequence databases would yield the most significant improvements in the accuracy of taxonomic assignments made using the P6 loop of the trnL region.
    Type of Medium: Online Resource
    ISSN: 1664-462X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2687947-5
    detail.hit.zdb_id: 2613694-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of Ecology, Wiley, Vol. 108, No. 5 ( 2020-09), p. 1860-1873
    Abstract: Plant species that expand their range in response to current climate change will encounter soil communities that may hinder, allow or even facilitate plant performance. It has been shown repeatedly for plant species originating from other continents that these plants are less hampered by soil communities from the new than from the original range. However, information about the interactions between intra‐continental range expanders and soil communities is sparse, especially at community level. Here we used a plant–soil feedback experiment approach to examine if the interactions between range expanders and soil communities change during range expansion. We grew communities of range‐expanding and native plant species with soil communities originating from the original and new range of range expanders. In these conditioned soils, we determined the composition of fungi and bacteria by high‐throughput amplicon sequencing of the ITS region and the 16S rRNA gene respectively. Nematode community composition was determined by microscopy‐based morphological identification. Then we tested how these soil communities influence the growth of subsequent communities of range expanders and natives. We found that after the conditioning phase soil bacterial, fungal and nematode communities differed by origin and by conditioning plant communities. Despite differences in bacterial, fungal and nematode communities between original and new range, soil origin did not influence the biomass production of plant communities. Both native and range expanding plant communities produced most above‐ground biomass in soils that were conditioned by plant communities distantly related to them. Synthesis . Communities of range‐expanding plant species shape specific soil communities in both original and new range soil. Plant–soil interactions of range expanders in communities can be similar to the ones of their closely related native plant species.
    Type of Medium: Online Resource
    ISSN: 0022-0477 , 1365-2745
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 3023-5
    detail.hit.zdb_id: 2004136-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Global Ecology and Biogeography, Wiley, Vol. 29, No. 3 ( 2020-03), p. 482-490
    Abstract: Plant species continue to be moved outside of their native range by human activities. Here, we aim to determine whether, once introduced, plants assimilate into native communities or whether they aggregate, thus forming mosaics of native‐ and alien‐rich communities. Alien species might aggregate in their non‐native range owing to shared habitat preferences, such as their tendency to establish in high‐biomass, species‐poor areas. Location Twenty‐two herbaceous grasslands in 14 countries, mainly in the temperate zone. Time period 2012–2016. Major taxa studied Plants. Methods We used a globally coordinated survey. Within this survey, we found 46 plant species, predominantly from Eurasia, for which we had co‐occurrence data in their native and non‐native ranges. We tested for differences in co‐occurrence patterns of 46 species between their native (home) and non‐native (away) range. We also tested whether species had similar habitat preferences, by testing for differences in total biomass and species richness of the patches that species occupy in their native and non‐native ranges. Results We found the same species to show different patterns of association depending on whether they were in their native or non‐native range. Alien species were negatively associated with native species; instead, they aggregated with other alien species in species‐poor, high‐biomass communities in their non‐native range compared with their native range. Main conclusions The strong differences between the native (home) and non‐native (away) range in species co‐occurrence patterns are evidence that the way in which species associate with resident communities in their non‐native range is not species dependent, but is instead a property of being away from their native range. These results thus highlight that species might undergo important ecological changes when introduced away from their native range. Overall, we show origin‐dependent associations that result in novel communities, in which alien‐rich patches exist within a mosaic of native‐dominated communities.
    Type of Medium: Online Resource
    ISSN: 1466-822X , 1466-8238
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 1479787-2
    detail.hit.zdb_id: 2021283-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Ecology, Wiley, Vol. 103, No. 9 ( 2022-09)
    Abstract: Classical theory identifies resource competition as the major structuring force of biotic communities and predicts that (i) levels of dominance and richness in communities are inversely related, (ii) narrow niches allow dense “packing” in niche space and thus promote diversity, and (iii) dominants are generalists with wide niches, such that locally abundant taxa also exhibit wide distributions. Current empirical support, however, is mixed. We tested these expectations using published data on arbuscular mycorrhizal (AM) fungal community composition worldwide. We recorded the expected negative relationship between dominance and richness and, to a degree, the positive association between local and global dominance. However, contrary to expectations, dominance was pronounced in communities where more specialists were present and, conversely, richness was higher in communities with more generalists. Thus, resource competition and niche packing appear to be of limited importance in AM fungal community assembly; rather, patterns of dominance and diversity seem more consistent with habitat filtering and stochastic processes.
    Type of Medium: Online Resource
    ISSN: 0012-9658 , 1939-9170
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 1797-8
    detail.hit.zdb_id: 2010140-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Nature Ecology & Evolution, Springer Science and Business Media LLC, Vol. 3, No. 4 ( 2019-03-25), p. 604-611
    Type of Medium: Online Resource
    ISSN: 2397-334X
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 2879715-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2023
    In:  Mycorrhiza Vol. 33, No. 3 ( 2023-06), p. 153-164
    In: Mycorrhiza, Springer Science and Business Media LLC, Vol. 33, No. 3 ( 2023-06), p. 153-164
    Type of Medium: Online Resource
    ISSN: 0940-6360 , 1432-1890
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 1087945-6
    detail.hit.zdb_id: 1475865-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Functional Ecology, Wiley, Vol. 35, No. 12 ( 2021-12), p. 2621-2634
    Abstract: Drastic loss in the area and quality of natural and semi‐natural habitats over the last hundred years has placed biodiversity and related ecosystem functions under substantial threat. Restoration of degraded ecosystems is among the main solutions to counteract this trend. However, past restoration efforts have not always led to the anticipated halt of species loss, neither have they ensured sustainable provision of vital ecosystem services. It has been proposed that one of the reasons for the failure to stop biodiversity decline through ecological restoration lies in overlooking the importance of improving ecosystem complexity, including the recovery of interaction networks with co‐adapted species. In the current review, we show how simultaneously addressing these often unnoticed aspects has the potential to advance the success of ecological restoration. We focus on the relationship between the community composition of arbuscular mycorrhizal (AM) fungi and the genetic diversity of the host plant population as an example. Most terrestrial plant species associate with AM fungi, which have a fundamental role in ecosystem functioning through enhancing plant nutrition and tolerance to abiotic and biotic stress. Previous studies have highlighted the significance of these symbionts in increasing the restoration success of degraded habitats. In parallel, the role of gene‐level diversity within plant populations for creating sustainable ecosystems has increasingly been acknowledged over the last years. However, considering the possible interaction of these two aspects, that is taking AM fungal communities and genetic diversity of host plant populations into account to enhance restoration success, has received no attention. Evidence suggests that the genetic diversity within a host plant population can have a significant effect on the ability of the host plant to benefit from mycorrhizal associations. We suggest that novel genomic approaches, such as community genetics and landscape genomics, should be applied to shed light on this aspect of plant–fungal interactions and be incorporated in restoration planning. Fundamental understanding of the nature of such associations can benefit from using restoration frameworks as large‐scale experimental settings. A free Plain Language Summary can be found within the Supporting Information of this article.
    Type of Medium: Online Resource
    ISSN: 0269-8463 , 1365-2435
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 2020307-X
    detail.hit.zdb_id: 619313-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...