GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: International Journal of Legal Medicine, Springer Science and Business Media LLC, Vol. 135, No. 1 ( 2021-01), p. 167-173
    Abstract: Age estimation based on the analysis of DNA methylation patterns has become a focus of forensic research within the past few years. However, there is little data available regarding postmortem DNA methylation analysis yet, and literature mainly encompasses analysis of blood from corpses without any signs of decomposition. It is not entirely clear yet which other types of specimen are suitable for postmortem epigenetic age estimation, and if advanced decomposition may affect methylation patterns of CpG sites. In living persons, buccal swabs are an easily accessible source of DNA for epigenetic age estimation. In this work, the applicability of this approach (buccal swabs as source of DNA) under different postmortem conditions was tested. Methylation levels of PDE4C were investigated in buccal swab samples collected from 73 corpses (0–90 years old; mean: 51.2) in different stages of decomposition. Moreover, buccal swab samples from 142 living individuals (0–89 years old; mean 41.2) were analysed. As expected, methylation levels exhibited a high correlation with age in living individuals (training set: r 2  = 0.87, validation set: r 2  = 0.85). This was also the case in postmortem samples ( r 2  = 0.90), independent of the state of decomposition. Only in advanced putrified cases with extremely low DNA amounts, epigenetic age estimation was not possible. In conclusion, buccal swabs are a suitable and easy to collect source for DNA methylation analysis as long as sufficient amounts of DNA are present.
    Type of Medium: Online Resource
    ISSN: 0937-9827 , 1437-1596
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 1459222-8
    SSG: 2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: BMC Biology, Springer Science and Business Media LLC, Vol. 18, No. 1 ( 2020-12)
    Abstract: Age-associated DNA methylation changes provide a promising biomarker for the aging process. While genome-wide DNA methylation profiles enable robust age-predictors by integration of many age-associated CG dinucleotides (CpGs), there are various alternative approaches for targeted measurements at specific CpGs that better support standardized and cost-effective high-throughput analysis. Results In this study, we utilized 4647 Illumina BeadChip profiles of blood to select CpG sites that facilitate reliable age-predictions based on pyrosequencing. We demonstrate that the precision of DNA methylation measurements can be further increased with droplet digital PCR (ddPCR). In comparison, bisulfite barcoded amplicon sequencing (BBA-seq) gave slightly lower correlation between chronological age and DNA methylation at individual CpGs, while the age-predictions were overall relatively accurate. Furthermore, BBA-seq data revealed that the correlation of methylation levels with age at neighboring CpG sites follows a bell-shaped curve, often associated with a CTCF binding site. We demonstrate that within individual BBA-seq reads the DNA methylation at neighboring CpGs is not coherently modified, but reveals a stochastic pattern. Based on this, we have developed a new approach for epigenetic age predictions based on the binary sequel of methylated and non-methylated sites in individual reads, which reflects heterogeneity in epigenetic aging within a sample. Conclusion Targeted DNA methylation analysis at few age-associated CpGs by pyrosequencing, BBA-seq, and particularly ddPCR enables high precision of epigenetic age-predictions. Furthermore, we demonstrate that the stochastic evolution of age-associated DNA methylation patterns in BBA-seq data enables epigenetic clocks for individual DNA strands.
    Type of Medium: Online Resource
    ISSN: 1741-7007
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2133020-7
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2020
    In:  International Journal of Legal Medicine Vol. 134, No. 6 ( 2020-11), p. 2215-2228
    In: International Journal of Legal Medicine, Springer Science and Business Media LLC, Vol. 134, No. 6 ( 2020-11), p. 2215-2228
    Abstract: There is a growing perception that DNA methylation may be influenced by exogenous and endogenous parameters. Knowledge of these factors is of great relevance for the interpretation of DNA-methylation data for the estimation of chronological age in forensic casework. We performed a literature review to identify parameters, which might be of relevance for the prediction of chronological age based on DNA methylation. The quality of age predictions might particularly be influenced by lifetime adversities (chronic stress, trauma/post-traumatic stress disorder (PTSD), violence, low socioeconomic status/education), cancer, obesity and related diseases, infectious diseases (especially HIV and Cytomegalovirus (CMV) infections), sex, ethnicity and exposure to toxins (alcohol, smoking, air pollution, pesticides). Such factors may alter the DNA methylation pattern and may explain the partly high deviations between epigenetic age and chronological age in single cases (despite of low mean absolute deviations) that can also be observed with “epigenetic clocks” comprising a high number of CpG sites. So far, only few publications dealing with forensic age estimation address these confounding factors. Future research should focus on the identification of further relevant confounding factors and the development of models that are “robust” against the influence of such biological factors by systematic investigations under targeted inclusion of diverse and defined cohorts.
    Type of Medium: Online Resource
    ISSN: 0937-9827 , 1437-1596
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 1459222-8
    SSG: 2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Human Molecular Genetics, Oxford University Press (OUP), ( 2023-08-08)
    Abstract: Rab GTPases are important regulators of intracellular vesicular trafficking. RAB5C is a member of the Rab GTPase family that plays an important role in the endocytic pathway, membrane protein recycling and signaling. Here we report on 12 individuals with nine different heterozygous de novo variants in RAB5C. All but one patient with missense variants (n = 9) exhibited macrocephaly, combined with mild-to-moderate developmental delay. Patients with loss of function variants (n = 2) had an apparently more severe clinical phenotype with refractory epilepsy and intellectual disability but a normal head circumference. Four missense variants were investigated experimentally. In vitro biochemical studies revealed that all four variants were damaging, resulting in increased nucleotide exchange rate, attenuated responsivity to guanine exchange factors and heterogeneous effects on interactions with effector proteins. Studies in C. elegans confirmed that all four variants were damaging in vivo and showed defects in endocytic pathway function. The variant heterozygotes displayed phenotypes that were not observed in null heterozygotes, with two shown to be through a dominant negative mechanism. Expression of the human RAB5C variants in zebrafish embryos resulted in defective development, further underscoring the damaging effects of the RAB5C variants. Our combined bioinformatic, in vitro and in vivo experimental studies and clinical data support the association of RAB5C missense variants with a neurodevelopmental disorder characterized by macrocephaly and mild-to-moderate developmental delay through disruption of the endocytic pathway.
    Type of Medium: Online Resource
    ISSN: 0964-6906 , 1460-2083
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 1474816-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...