GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Nature Genetics, Springer Science and Business Media LLC, Vol. 38, No. 6 ( 2006-6), p. 688-693
    Type of Medium: Online Resource
    ISSN: 1061-4036 , 1546-1718
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2006
    detail.hit.zdb_id: 1494946-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: PLOS ONE, Public Library of Science (PLoS), Vol. 17, No. 9 ( 2022-9-28), p. e0274571-
    Abstract: There is limited information on how patient outcomes have changed during the COVID-19 pandemic. This study characterizes changes in mortality, intubation, and ICU admission rates during the first 20 months of the pandemic. Study design and methods University of Wisconsin researchers collected and harmonized electronic health record data from 1.1 million COVID-19 patients across 21 United States health systems from February 2020 through September 2021. The analysis comprised data from 104,590 adult hospitalized COVID-19 patients. Inclusion criteria for the analysis were: (1) age 18 years or older; (2) COVID-19 ICD-10 diagnosis during hospitalization and/or a positive COVID-19 PCR test in a 14-day window (+/- 7 days of hospital admission); and (3) health system contact prior to COVID-19 hospitalization. Outcomes assessed were: (1) mortality (primary), (2) endotracheal intubation, and (3) ICU admission. Results and significance The 104,590 hospitalized participants had a mean age of 61.7 years and were 50.4% female, 24% Black, and 56.8% White. Overall risk-standardized mortality (adjusted for age, sex, race, ethnicity, body mass index, insurance status and medical comorbidities) declined from 16% of hospitalized COVID-19 patients (95% CI: 16% to 17%) early in the pandemic (February-April 2020) to 9% (CI: 9% to 10%) later (July-September 2021). Among subpopulations, males (vs. females), those on Medicare (vs. those on commercial insurance), the severely obese (vs. normal weight), and those aged 60 and older (vs. younger individuals) had especially high mortality rates both early and late in the pandemic. ICU admission and intubation rates also declined across these 20 months. Conclusions Mortality, intubation, and ICU admission rates improved markedly over the first 20 months of the pandemic among adult hospitalized COVID-19 patients although gains varied by subpopulation. These data provide important information on the course of COVID-19 and identify hospitalized patient groups at heightened risk for negative outcomes. Trial registration ClinicalTrials.gov Identifier: NCT04506528 ( https://clinicaltrials.gov/ct2/show/NCT04506528 ).
    Type of Medium: Online Resource
    ISSN: 1932-6203
    Language: English
    Publisher: Public Library of Science (PLoS)
    Publication Date: 2022
    detail.hit.zdb_id: 2267670-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Science Translational Medicine, American Association for the Advancement of Science (AAAS), Vol. 8, No. 364 ( 2016-11-09)
    Abstract: Patients with diffuse large B cell lymphoma (DLBCL) exhibit marked diversity in tumor behavior and outcomes, yet the identification of poor-risk groups remains challenging. In addition, the biology underlying these differences is incompletely understood. We hypothesized that characterization of mutational heterogeneity and genomic evolution using circulating tumor DNA (ctDNA) profiling could reveal molecular determinants of adverse outcomes. To address this hypothesis, we applied cancer personalized profiling by deep sequencing (CAPP-Seq) analysis to tumor biopsies and cell-free DNA samples from 92 lymphoma patients and 24 healthy subjects. At diagnosis, the amount of ctDNA was found to strongly correlate with clinical indices and was independently predictive of patient outcomes. We demonstrate that ctDNA genotyping can classify transcriptionally defined tumor subtypes, including DLBCL cell of origin, directly from plasma. By simultaneously tracking multiple somatic mutations in ctDNA, our approach outperformed immunoglobulin sequencing and radiographic imaging for the detection of minimal residual disease and facilitated noninvasive identification of emergent resistance mutations to targeted therapies. In addition, we identified distinct patterns of clonal evolution distinguishing indolent follicular lymphomas from those that transformed into DLBCL, allowing for potential noninvasive prediction of histological transformation. Collectively, our results demonstrate that ctDNA analysis reveals biological factors that underlie lymphoma clinical outcomes and could facilitate individualized therapy.
    Type of Medium: Online Resource
    ISSN: 1946-6234 , 1946-6242
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2016
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Nicotine and Tobacco Research, Oxford University Press (OUP), Vol. 25, No. 6 ( 2023-05-22), p. 1184-1193
    Abstract: Available evidence is mixed concerning associations between smoking status and COVID-19 clinical outcomes. Effects of nicotine replacement therapy (NRT) and vaccination status on COVID-19 outcomes in smokers are unknown. Methods Electronic health record data from 104 590 COVID-19 patients hospitalized February 1, 2020 to September 30, 2021 in 21 U.S. health systems were analyzed to assess associations of smoking status, in-hospital NRT prescription, and vaccination status with in-hospital death and ICU admission. Results Current (n = 7764) and never smokers (n = 57 454) did not differ on outcomes after adjustment for age, sex, race, ethnicity, insurance, body mass index, and comorbidities. Former (vs never) smokers (n = 33 101) had higher adjusted odds of death (aOR, 1.11; 95% CI, 1.06–1.17) and ICU admission (aOR, 1.07; 95% CI, 1.04–1.11). Among current smokers, NRT prescription was associated with reduced mortality (aOR, 0.64; 95% CI, 0.50–0.82). Vaccination effects were significantly moderated by smoking status; vaccination was more strongly associated with reduced mortality among current (aOR, 0.29; 95% CI, 0.16–0.66) and former smokers (aOR, 0.47; 95% CI, 0.39–0.57) than for never smokers (aOR, 0.67; 95% CI, 0.57, 0.79). Vaccination was associated with reduced ICU admission more strongly among former (aOR, 0.74; 95% CI, 0.66–0.83) than never smokers (aOR, 0.87; 95% CI, 0.79–0.97). Conclusions Former but not current smokers hospitalized with COVID-19 are at higher risk for severe outcomes. SARS-CoV-2 vaccination is associated with better hospital outcomes in COVID-19 patients, especially current and former smokers. NRT during COVID-19 hospitalization may reduce mortality for current smokers. Implications Prior findings regarding associations between smoking and severe COVID-19 disease outcomes have been inconsistent. This large cohort study suggests potential beneficial effects of nicotine replacement therapy on COVID-19 outcomes in current smokers and outsized benefits of SARS-CoV-2 vaccination in current and former smokers. Such findings may influence clinical practice and prevention efforts and motivate additional research that explores mechanisms for these effects.
    Type of Medium: Online Resource
    ISSN: 1469-994X
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 2020202-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Cancer Epidemiology, Biomarkers & Prevention, American Association for Cancer Research (AACR), Vol. 32, No. 1 ( 2023-01-09), p. 12-21
    Abstract: There is mixed evidence about the relations of current versus past cancer with severe COVID-19 outcomes and how they vary by patient and cancer characteristics. Methods: Electronic health record data of 104,590 adult hospitalized patients with COVID-19 were obtained from 21 United States health systems from February 2020 through September 2021. In-hospital mortality and ICU admission were predicted from current and past cancer diagnoses. Moderation by patient characteristics, vaccination status, cancer type, and year of the pandemic was examined. Results: 6.8% of the patients had current (n = 7,141) and 6.5% had past (n = 6,749) cancer diagnoses. Current cancer predicted both severe outcomes but past cancer did not; adjusted odds ratios (aOR) for mortality were 1.58 [95% confidence interval (CI), 1.46–1.70] and 1.04 (95% CI, 0.96–1.13), respectively. Mortality rates decreased over the pandemic but the incremental risk of current cancer persisted, with the increment being larger among younger vs. older patients. Prior COVID-19 vaccination reduced mortality generally and among those with current cancer (aOR, 0.69; 95% CI, 0.53–0.90). Conclusions: Current cancer, especially among younger patients, posed a substantially increased risk for death and ICU admission among patients with COVID-19; prior COVID-19 vaccination mitigated the risk associated with current cancer. Past history of cancer was not associated with higher risks for severe COVID-19 outcomes for most cancer types. Impact: This study clarifies the characteristics that modify the risk associated with cancer on severe COVID-19 outcomes across the first 20 months of the COVID-19 pandemic. See related commentary by Egan et al., p. 3
    Type of Medium: Online Resource
    ISSN: 1055-9965 , 1538-7755
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2036781-8
    detail.hit.zdb_id: 1153420-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 134, No. Supplement_1 ( 2019-11-13), p. 490-490
    Abstract: Introduction: Due to the range of biological and molecular heterogeneity in diffuse large B-cell lymphoma (DLBCL), personalized risk stratification and treatment is a promising avenue to improving outcomes. Although most risk stratification depends primarily on clinical data (e.g. IPI), the addition of molecular, genomic or disease burden (e.g. quantitative PET imaging) features in DLBCL could help better stratify patients (pts) according to disease biology or burden. Such data are often hard to obtain in routine clinical settings; current methods remain limited by the need for tissue samples and low reproducibility in daily practice. A single method to assess such molecular markers from plasma samples could enable a standardized process. Here, we use a circulating tumor DNA (ctDNA)-based next-generation sequencing (NGS) method on pre-treatment plasma samples from first-line DLBCL pts to show prognostic correlations from molecular and disease burden assessments. Methods: We performed targeted NGS on plasma samples from 310 previously untreated DLBCL pts enrolled in the GOYA study (NCT01287741) with a custom DLBCL-specific panel using a workflow optimized for ctDNA. Cell-free DNA (cfDNA) was isolated from plasma and an average of 30.7ng (range, 0.7-50ng) of cfDNA was used. Library preparation and NGS were performed with a modified AVENIO ctDNA workflow, with a custom panel of ~314kb designed to cover regions relevant for cell-of-origin (COO) and minimal residual disease in DLBCL. Single nucleotide variants (SNVs), insertions/deletions (indels), and fusions were determined, and criteria based on publicly available data removed non-tumor specific variants. For each sample, number of tumor genome copies per mL of plasma (MMPM), a measure of tumor burden, was calculated using the allele fractions of variant calls and cfDNA mass. Variant calls from 230 pts were used to build a machine learning model to determine COO, which was tested on the remaining 80 pts. Variant and COO calls were correlated with data from corresponding tissue samples, including mutations from FoundationOne® Heme and gene expression-based COO determination from Lymph2Cx (NanoString). Variant, COO, and disease burden assessments from ctDNA NGS were also compared with clinical variables, including IPI, baseline quantitative PET imaging, and progression-free survival (PFS) data. Results: 77% of SNVs (958/1247), 63% of indels (72/115), and 74% of fusions (49/66) detected with the FoundationOne assay were detected in the plasma samples. COO calls from plasma showed 93% concordance with Lymph2Cx calls from tissue when both methods classified a sample, with 37/40 germinal center B-cell (GCB) agreeing and 17/18 non-GCB agreeing in the test set. Subsequently, correlation of various metrics from the ctDNA assay with clinical outcomes was assessed. Non-GCB pts showed a trend towards worse PFS when compared with GCB pts (hazard ratio [HR], 1.23; 95th percentile: 0.79─1.92; p=0.32). Additionally, worse PFS was observed for pts with MYC fusions (n=12; HR, 2.83; 95th percentile: 1.29─6.21; p=0.010) and TP53 SNVs or indels (n=99; HR, 1.75; 95th percentile: 1.13─2.70; p=0.031), with a similar trend for BCL2 fusions (n=31; HR, 1.96; 95th percentile: 0.94─4.07; p=0.072). Baseline MMPM was significantly correlated with total metabolic tumor volume (TMTV) as measured by PET (r=0.36; p & lt;0.001) and sum of the product of diameters (SPD; r=0.13; p=0.022). Higher MMPM values corresponded to higher IPI scores (ANOVA p & lt;0.001), higher likelihood of bulky disease (p=0.019), and worse PFS as a continuous variable (HR, 1.46; p=0.0006; Figure 1). In a multivariate model accounting for TMTV, MMPM was not prognostic (p=0.15), but in a model containing SPD and MMPM, both were independently prognostic (MMPM p=0.010; SPD p=0.0046), suggesting that SPD and MMPM provide complementary prognostic information. Interestingly, in this sample set, activated B-cell samples also showed a significantly higher MMPM than GCB and unclassified samples (p=0.0017). Even when considering COO and IPI in a multivariate analysis, MMPM remained correlated with PFS (HR, 1.23; p=0.079). Conclusions: We describe a single NGS-based method, which calls variants, determines COO, and assesses tumor burden from plasma. Using these results, we show that pre-treatment plasma-based molecular and tumor burden measurements in previously untreated DLBCL pts correlate with PFS. Disclosures Tabari: F. Hoffmann-La Roche: Equity Ownership; Roche Sequencing Solutions: Employment. Lovejoy:Roche Sequencing Solutions: Employment. Lin:Roche Sequencing Solutions: Employment; Veracyte: Other: Veracyte (spouse). Bolen:F. Hoffmann-La Roche: Equity Ownership; Genentech, Inc.: Employment. Saelee:Roche Sequencing Solutions: Employment. Lefkowitz:Roche Sequencing Solutions: Employment. Kurtz:Roche: Consultancy. Vitazka:Roche Sequencing Solutions: Employment. Venstrom:F. Hoffmann-La Roche Ltd: Employment. Nielsen:F. Hoffmann-La Roche Ltd: Employment, Equity Ownership. Parreira:F.Hoffmann-La Roche Ltd: Employment, Equity Ownership, Honoraria. Klass:Roche Sequencing Solutions: Employment; Roche: Equity Ownership. Luong:Roche Sequencing Solutions: Employment.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 130-130
    Abstract: Background: The prognosis for diffuse large B-cell lymphoma (DLBCL) patients who fail initial therapy remains poor. Current prognostic methods to identify patients destined for failure employ baseline molecular profiles or imaging data at fixed milestones, thus sub-optimally capturing functional response dynamics. Noninvasive detection of tumor-specific DNA sequences in the plasma, or circulating tumor DNA (ctDNA), provides a window of opportunity to observe these changes early during therapy. We sought to relate early ctDNA kinetics during therapy to tumor volume, therapeutic responses, and ultimate clinical outcomes. Methods: Using CAPP-Seq, a next-generation sequencing platform for detection of ctDNA (Newman Nature Medicine 2014), we prospectively profiled patients with DLBCL receiving combination immunochemotherapy at Stanford University. Tumor samples were used to define tumor specific somatic alterations, which were then monitored in plasma. We examined two methods of assessing ctDNA change over time: a simple heuristic model (assessing the change in ctDNA concentration from cycle 1 to cycle 2), and a biologically based mathematical model of ctDNA dynamics to predict tumor volume and patient outcomes. Results: We sequenced tumor and plasma samples (n=135) from ten patients receiving Rituximab-containing regimens. Plasma samples were collected prior to, during, and immediately after chemotherapy, with a median of 7 samples per patient during the first therapy cycle. Across patients, ctDNA concentrations varied over a 6-log range (Figure 1). The change in ctDNA concentration between cycle 1 and cycle 2 generally tracked with FDG PET/CT response - patients achieving a PR or CR had an average decrease of 2.9±0.8 logs in ctDNA concentration, compared to an increase of 0.3±0.8 logs for those with SD or PD (p 〈 0.001). However, this metric failed to capture some patients who ultimately relapsed after radiographic remission. We therefore developed a multi-compartmental ordinary-differential equation (ODE) model of tumor dynamics capturing tumor volume, ctDNA, and the effect of chemotherapy. We performed nonlinear regression to fit data to this model using serial ctDNA measurements from individual patients, thereby creating continuous, patient-specific models of both ctDNA and tumor volume (Figure 1a-b). This mathematical model significantly fit ctDNA measurements and predicted tumor volumes across patients and samples (Figure 1c). Using ctDNA measurements from the first 2 cycles of therapy, this model accurately predicted clinical outcomes for all ten patients, including relapse after radiographic remission. An additional cohort of patients will be presented at this meeting. Conclusions: Given its high specificity and large dynamic range, ctDNA provides an opportunity to monitor the dynamics of therapeutic response in patients with DLBCL. Methods capturing these dynamics correlate with radiographic response. Given the complexity of tumor dynamics, heuristic models of ctDNA may less faithfully capture ultimate clinical outcomes. Personalized mathematical models of ctDNA can potentially reflect tumor dynamics and predict clinical outcomes for individual patients. Figure 1. Personalized tumor modeling from ctDNA tumor dynamics. a) An example of a model of ctDNA fit to observed data for a single patient (DLBCL010). b) The corresponding tumor volume prediction over time for patient DLBCL010. c) Summary of the mathematical model across ten patients, demonstrating the fit between measured data and the model. Figure 1. Personalized tumor modeling from ctDNA tumor dynamics. a) An example of a model of ctDNA fit to observed data for a single patient (DLBCL010). b) The corresponding tumor volume prediction over time for patient DLBCL010. c) Summary of the mathematical model across ten patients, demonstrating the fit between measured data and the model. Disclosures Newman: Roche: Consultancy. Klass:Roche: Employment. Gambhir:CellSight: Consultancy. Diehn:Roche: Consultancy. Alizadeh:Genentech: Consultancy; Roche: Consultancy; Celgene: Consultancy.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Nature Biotechnology, Springer Science and Business Media LLC, Vol. 34, No. 5 ( 2016-5), p. 547-555
    Type of Medium: Online Resource
    ISSN: 1087-0156 , 1546-1696
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2016
    detail.hit.zdb_id: 1494943-X
    detail.hit.zdb_id: 1311932-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 114-114
    Abstract: Background and Methods DLBCL patients exhibit striking heterogeneity in therapeutic responses, yet current methods to assess residual disease have shown suboptimal performance. Circulating tumor DNA (ctDNA) is a promising noninvasive biomarker for disease burden. While High-Throughput Sequencing of immunoglobulin genes (Ig-HTS) has shown utility for ctDNA detection in DLBCL, only a small number of tumor markers are profiled, limiting its sensitivity and broad applicability (Kurtz DM, Blood 2015 and Roschewski M, Lancet Oncology 2015). Here, we studied DLBCL patients using CAPP-Seq, a recently developed approach for ultrasensitive assessment of ctDNA that profiles multiple genomic regions across hundreds of kilobases in a single HTS assay (Newman AM, Nat. Med. 2014). Results We designed a 250kb DLBCL CAPP-Seq panel targeting 1053 regions from 268 genes, incorporating recurrent single nucleotide variants (SNVs), insertions/deletions (indels) and rearrangements, and evaluated its genotyping performance on diverse tumors from 63 patients (Table 1). We detected somatic mutations in 98% of patients (median: 143 variants/pt), including AID-related events in well-known hotspots. Moreover, we detected 100% of BCL2/BCL6 rearrangements and most MYC translocations previously identified by FISH (n = 30). Biopsy-confirmed tumor mutations were detectable with 99.3% specificity in 97% of pretreatment plasma samples (n = 37) with a range of 0.007% to 32% mean fractional abundance. Median recovery rates for both SNVs and fusions in plasma exceeded 85%, indicating robust tumor genotyping performance. Furthermore, in most patients, paired allelic fractions between tumor biopsies and pretreatment plasma samples were significantly correlated (P 〈 0.05), demonstrating that ctDNA can accurately mirror the mutational profiles found in tumor tissues. We next evaluated the utility of direct biopsy-free genotyping of pretreatment plasma using a novel ctDNA genotyping approach. We noninvasively identified variants in 97% of cases (n=37), and confirmed a median of 95% of SNVs per cfDNA sample in paired tumor biopsies, indicating that plasma DNA is an effective surrogate for direct tumor genotyping. Having established the technical performance in pretreatment cfDNA, we next assessed utility of CAPP-Seq for minimal residual disease (MRD) detection (Figure 1). Plasma samples at time points of complete response (n = 22) were collected from 10 patients, all of whom ultimately relapsed. Each plasma sample was then analyzed for evidence of biopsy-confirmed mutations from pretreated tumors. Strikingly, ctDNA was detected in 9 of 10 patients (90%), including 3 of 3 isolated CNS relapses, with fractional abundances as low as 0.004%. Among patients with CAPP-Seq detectable MRD, the median time between first detection and relapse was 162 days, and all patients whose MRD levels were uniformly below the detection limit had blood collections 〉 8 months prior to relapse. Conclusions To summarize, we validated robust technical performance of a novel approach for noninvasive tumor genotyping in DLBCL using pretreatment plasma, and for MRD surveillance. Given the demonstrated advantages of CAPP-Seq in the setting of radiographic remission, we envision its utility for improved relapse prediction. Moreover, we anticipate that this biopsy-free genotyping approach will have applications for monitoring subclonal dynamics and emergent mutations in response to therapy. FS, DMK and AMN contributed equally. Disclosures Newman: Roche: Consultancy. Klass:Roche: Employment. Diehn:Roche: Consultancy. Alizadeh:Genentech: Consultancy; Celgene: Consultancy; Roche: Consultancy.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Journal of Clinical Oncology, American Society of Clinical Oncology (ASCO), Vol. 34, No. 15_suppl ( 2016-05-20), p. 9061-9061
    Type of Medium: Online Resource
    ISSN: 0732-183X , 1527-7755
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2016
    detail.hit.zdb_id: 2005181-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...