GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Ocean Science, Copernicus GmbH, Vol. 17, No. 6 ( 2021-11-18), p. 1657-1675
    Abstract: Abstract. The direction and magnitude of carbon dioxide fluxes between the atmosphere and the sea are regulated by the gradient in the partial pressure of carbon dioxide (pCO2) across the air–sea interface. Typically, observations of pCO2 at the sea surface are carried out by using research vessels and ships of opportunity, which usually do not resolve the diurnal cycle of pCO2 at a given location. This study evaluates the magnitude and driving processes of the diurnal cycle of pCO2 in a coastal region of the Baltic Sea. We present pCO2 data from July 2018 to June 2019 measured in the vicinity of the island of Utö at the outer edge of the Archipelago Sea, and quantify the relevant physical, biological, and chemical processes controlling pCO2. The highest monthly median of diurnal pCO2 variability (31 µatm) was observed in August and predominantly driven by biological processes. Biological fixation and mineralization of carbon led to sinusoidal diurnal pCO2 variations, with a maximum in the morning and a minimum in the afternoon. Compared with the biological carbon transformations, the impacts of air–sea fluxes and temperature changes on pCO2 were small, with their contributions to the monthly medians of diurnal pCO2 variability being up to 12 and 5 µatm, respectively. During upwelling events, short-term pCO2 variability (up to 500 µatm within a day) largely exceeded the usual diurnal cycle. If the net annual air–sea flux of carbon dioxide at our study site and for the sampled period is calculated based on a data subset that consists of only one regular measurement per day, the bias in the net exchange depends on the sampling time and can amount up to ±12 %. This finding highlights the importance of continuous surface pCO2 measurements at fixed locations for the assessment of the short-term variability of the carbonate system and the correct determination of air–sea CO2 fluxes.
    Type of Medium: Online Resource
    ISSN: 1812-0792
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2183769-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    The Electrochemical Society ; 2010
    In:  ECS Meeting Abstracts Vol. MA2010-01, No. 6 ( 2010-02-05), p. 404-404
    In: ECS Meeting Abstracts, The Electrochemical Society, Vol. MA2010-01, No. 6 ( 2010-02-05), p. 404-404
    Abstract: Abstract not Available.
    Type of Medium: Online Resource
    ISSN: 2151-2043
    Language: Unknown
    Publisher: The Electrochemical Society
    Publication Date: 2010
    detail.hit.zdb_id: 2438749-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 10 ( 2023-4-24)
    Abstract: Climate change is driving Baltic Sea shifts, with predictions for decrease in salinity and increase in temperature and light limitation. Understanding the responses of the spring phytoplankton community to these shifts is essential to assess potential changes in the Baltic Sea biogeochemical cycles and functioning. In this study we use a high-throughput well-plate setup to experimentally define growth and the light acquisition traits over gradients of salinity, temperature and irradiance for three dinoflagellates commonly occurring during spring in the Baltic Sea, Apocalathium malmogiense , Gymnodinium corollarium and Heterocapsa arctica subsp. frigida . By analysing the response of cell volume, growth, and light-acquisition traits to temperature and salinity gradients, we showed that each of the three dinoflagellates have their own niches and preferences and are affected differently by small changes in salinity and temperature. A. malmogiense has a more generalist strategy, its growth being less affected by temperature, salinity, and light gradients in comparison to the other tested dinoflagellates, with G. corollarium growth being more sensitive to higher light intensities. On the other hand, G. corollarium light acquisition traits seem to be less sensitive to changes in temperature and salinity than those of A. malmogiense and H. arctica subsp. frigida . We contextualized our experimental findings using data collected on ships-of-opportunity between 1993-2011 over natural temperature and salinity gradients in the Baltic Sea. The Apocalathium complex and H. arctica subsp. frigida were mostly found in temperatures & lt;10°C and salinities 4-10 ‰, matching the temperature and salinity gradients used in our experiments. Our results illustrate that trait information can complement phytoplankton monitoring observations, providing powerful tools to answer questions related to species’ capacity to adapt and compete under a changing environment.
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 9 ( 2022-9-2)
    Abstract: Plankton communities form the basis of aquatic ecosystems and elucidating their role in increasingly important environmental issues is a persistent research question. Recent technological advances in automated microscopic imaging, together with cloud platforms for high-performance computing, have created possibilities for collecting and processing detailed high-frequency data on planktonic communities, opening new horizons for testing core hypotheses in aquatic ecosystems. Analyzing continuous streams of big data calls for development and deployment of novel computer vision and machine learning systems. The implementation of these analysis systems is not always straightforward with regards to operationality, and issues regarding data flows, computing and data treatment need to be considered. We created a data pipeline for automated near-real-time classification of phytoplankton during remote deployment of imaging flow cytometer (Imaging FlowCytobot, IFCB). Convolutional neural network (CNN) is used to classify continuous imaging data with probability thresholds used to filter out images not belonging to our existing classes. The automated data flow and classification system were used to monitor dominating species of filamentous cyanobacteria on the coast of Finland during summer 2021. We demonstrate that good phytoplankton recognition can be achieved with transfer learning utilizing a relatively shallow, publicly available, pre-trained CNN model and fine-tuning it with community-specific phytoplankton images (overall F1-score of 0.95 for test set of our labeled image data complemented with a 50% unclassifiable image portion). This enables both fast training and low computing resource requirements for model deployment making it easy to modify and applicable in wide range of situations. The system performed well when used to classify a natural phytoplankton community over different seasons (overall F1-score 0.82 for our evaluation data set). Furthermore, we address the key challenges of image classification for varying planktonic communities and analyze the practical implications of confused classes. We published our labeled image data set of Baltic Sea phytoplankton community for the training of image recognition models (~63000 images in 50 classes) to accelerate implementation of imaging systems for other brackish and freshwater communities. Our evaluation data set, 59 fully annotated samples of natural communities throughout an annual cycle, is also available for model testing purposes (~150000 images).
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 8 ( 2021-3-25)
    Abstract: Cyanobacteria are an important part of phytoplankton communities, however, they are also known for forming massive blooms with potentially deleterious effects on recreational use, human and animal health, and ecosystem functioning. Emerging high-frequency imaging flow cytometry applications, such as Imaging FlowCytobot (IFCB), are crucial in furthering our understanding of the factors driving bloom dynamics, since these applications provide community composition information at frequencies impossible to attain using conventional monitoring methods. However, the proof of applicability of automated imaging applications for studying dynamics of filamentous cyanobacteria is still scarce. In this study we present the first results of IFCB applied to a Baltic Sea cyanobacterial bloom community using a continuous flow-through setup. Our main aim was to demonstrate the pros and cons of the IFCB in identifying filamentous cyanobacterial taxa and in estimating their biomass. Selected environmental parameters (water temperature, wind speed and salinity) were included, in order to demonstrate the dynamics of the system the cyanobacteria occur in and the possibilities for analyzing high-frequency phytoplankton observations against changes in the environment. In order to compare the IFCB results with conventional monitoring methods, filamentous cyanobacteria were enumerated from water samples using light microscopical analysis. Two common bloom forming filamentous cyanobacteria in the Baltic Sea, Aphanizomenon flosaquae and Dolichospermum spp. dominated the bloom, followed by an increase in Oscillatoriales abundance. The IFCB results compared well with the results of the light microscopical analysis, especially in the case of Dolichospermum . Aphanizomenon biomass varied slightly between the methods and the Oscillatoriales results deviated the most. Bloom formation was initiated as water temperature increased to over 15°C and terminated as the wind speed increased, dispersing the bloom. Community shifts were closely related to movements of the water mass. We demonstrate how using a high-frequency imaging flow cytometry application can help understand the development of cyanobacteria summer blooms.
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Elsevier BV ; 2021
    In:  Biosensors and Bioelectronics Vol. 178 ( 2021-04), p. 112974-
    In: Biosensors and Bioelectronics, Elsevier BV, Vol. 178 ( 2021-04), p. 112974-
    Type of Medium: Online Resource
    ISSN: 0956-5663
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2021
    detail.hit.zdb_id: 1496379-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Copernicus GmbH ; 2018
    In:  Atmospheric Measurement Techniques Vol. 11, No. 9 ( 2018-09-25), p. 5335-5350
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 11, No. 9 ( 2018-09-25), p. 5335-5350
    Abstract: Abstract. In this study, we introduce new observations of sea–air fluxes of carbon dioxide using the eddy covariance method. The measurements took place at the Utö Atmospheric and Marine Research Station on the island of Utö in the Baltic Sea in July–October 2017. The flux measurement system is based on a closed-path infrared gas analyzer (LI-7000, LI-COR) requiring only occasional maintenance, making the station capable of continuous monitoring. However, such infrared gas analyzers are prone to significant water vapor interference in a marine environment, where CO2 fluxes are small. Two LI-7000 analyzers were run in parallel to test the effect of a sample air drier which dampens water vapor fluctuations and a virtual impactor, included to remove liquid sea spray, both of which were attached to the sample air tubing of one of the analyzers. The systems showed closely similar (R2=0.99) sea–air CO2 fluxes when the latent heat flux was low, which proved that neither the drier nor the virtual impactor perturbed the CO2 flux measurement. However, the undried measurement had a positive bias that increased with increasing latent heat flux, suggesting water vapor interference. For both systems, cospectral densities between vertical wind speed and CO2 molar fraction were distributed within the expected frequency range, with a moderate attenuation of high-frequency fluctuations. While the setup equipped with a drier and a virtual impactor generated a slightly higher flux loss, we opt for this alternative for its reduced water vapor cross-sensitivity and better protection against sea spray. The integral turbulence characteristics were found to agree with the universal stability dependence observed over land. Nonstationary conditions caused unphysical results, which resulted in a high percentage (65 %) of discarded measurements. After removing the nonstationary cases, the direction of the sea–air CO2 fluxes was in good accordance with independently measured CO2 partial pressure difference between the sea and the atmosphere. Atmospheric CO2 concentration changes larger than 2 ppm during a 30 min averaging period were found to be associated with the nonstationarity of CO2 fluxes.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2018
    detail.hit.zdb_id: 2505596-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...