GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Advanced Optical Materials, Wiley, Vol. 9, No. 17 ( 2021-09)
    Abstract: Photochromic molecule‐incorporated optical devices offer desirable properties for photocontrollable optical systems, including advanced optical data storage and super‐resolution imaging. However, these molecules require multiple illumination sources, such as UV and visible light, for reversible photochemical reactions, which restricts their potential for advanced application. This study reports an effective strategy for modulating photoisomerization via a single near‐infrared light source assisted by plasmonically enhanced photoswitchable upconversion photoluminescence (UCPL). The proposed quasi‐periodic metal nanostructures to facilitate the resonance modes in the broadband region enable the substitution of the detrimental high‐energy light source (i.e., UV light) with near‐infrared stimuli, which is associated with UCPL enhancement of over two orders with spectrum orthogonality. To validate this concept, the accelerated reversible‐photoisomerization kinetics is experimentally confirmed by three‐ and tenfold amplification of the PL intensities of the photochromic disulfonyldiarylethene derivatives. Further validation of the proposed strategy is performed using photodynamic imaging, which reveals accelerated photoisomerization, high photocyclization stability, and high spatial resolution.
    Type of Medium: Online Resource
    ISSN: 2195-1071 , 2195-1071
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 2708158-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Sensors, MDPI AG, Vol. 19, No. 12 ( 2019-06-18), p. 2728-
    Abstract: Adenosine deaminase (ADA), which catalyzes the irreversible deamination of adenosine to inosine, is related to various human diseases such as tuberculous peritonitis and leukemia. Therefore, the method used to detect ADA activity and screen the effectiveness of various inhibitor candidates has important implications for the diagnosis treatment for various human diseases. A simple and rapid assay method for ADA, based on the enzymatic formation of a luminescent lanthanide complex, is proposed in this study. Inosine, an enzymatic product of ADA with stronger sensitization efficiency for Tb3+ than adenosine, produced a strong luminescence by forming an inosine-Tb3+ complex, and it enabled the direct monitoring of ADA activity in real-time. By introducing only Tb3+ to adenosine and ADA in the buffer, the enhancement of luminescence enabled the detection of a low concentration of ADA (detection limit 1.6 U/L). Moreover, this method could accurately determine the inhibition efficiency (IC50) of the known ADA inhibitor, erhythro-9-(2-hydroxy-3-nonyl)adenine (EHNA), and the inhibition of ADA could be confirmed by the naked eye. Considering its simplicity, this assay could be extended to the high-throughput screening of various ADA inhibitor candidates.
    Type of Medium: Online Resource
    ISSN: 1424-8220
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2052857-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...