GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Communications Earth & Environment, Springer Science and Business Media LLC, Vol. 2, No. 1 ( 2021-02-15)
    Abstract: Spring 2020 broke sunshine duration records across Western Europe. The Netherlands recorded the highest surface irradiance since 1928, exceeding the previous extreme of 2011 by 13%, and the diffuse fraction of the irradiance measured a record low percentage (38%). The coinciding irradiance extreme and a reduction in anthropogenic pollution due to COVID-19 measures triggered the hypothesis that cleaner-than-usual air contributed to the record. Based on analyses of ground-based and satellite observations and experiments with a radiative transfer model, we estimate a 1.3% (2.3 W m −2 ) increase in surface irradiance with respect to the 2010–2019 mean due to a low median aerosol optical depth, and a 17.6% (30.7 W m −2 ) increase due to several exceptionally dry days and a very low cloud fraction overall. Our analyses show that the reduced aerosols and contrails due to the COVID-19 measures are far less important in the irradiance record than the dry and particularly cloud-free weather.
    Type of Medium: Online Resource
    ISSN: 2662-4435
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 3037243-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Applied Optics, Optica Publishing Group, Vol. 44, No. 25 ( 2005-09-01), p. 5321-
    Type of Medium: Online Resource
    ISSN: 0003-6935 , 1539-4522
    Language: English
    Publisher: Optica Publishing Group
    Publication Date: 2005
    detail.hit.zdb_id: 207387-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Photochemistry and Photobiology, Wiley, Vol. 82, No. 3 ( 2006-05), p. 689-694
    Abstract: A small and robust dosimeter for determining the biologically effective dose of ambient UV radiation has been developed using UV‐sensitive mutant spores of Bacillus subtilis strain TKJ6312. A membrane filter with four spots of the spores was snapped to a slide mount. The slide was wrapped and covered with two or more layers of polyethylene sheet to protect the sample from rain and snow and to reduce monthly‐cumulative doses within the measurable range. From 1999, monthly data were collected at 17 sites for more than 1 year, and data for 4 to 6 consecutive years were obtained from 12 sites. Yearly total values of the spore inactivation dose (SID) ranged from 3200 at subarctic Oulu to 96000 at tropical Denpasar, and the mean yearly values of SID exhibited an exponential dependence on latitude in both hemispheres with a doubling for about every 14 degrees of change. During the observation period, increasing trends of UV doses have been observed at all sites with more than 5 years of data available. Year‐to‐year variations at high and middle latitude sites are considered due mostly to climatic variation. At three tropical sites, negative correlations between the yearly doses and the column ozone amounts were observed. The results verified the applicability of spore dosimetry for global and long‐time monitoring of solar UV radiation, in particular at tropical sites where no monitoring is taking place.
    Type of Medium: Online Resource
    ISSN: 0031-8655 , 1751-1097
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2006
    detail.hit.zdb_id: 2048860-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Copernicus GmbH ; 2016
    In:  Atmospheric Measurement Techniques Vol. 9, No. 4 ( 2016-04-28), p. 1871-1888
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 9, No. 4 ( 2016-04-28), p. 1871-1888
    Abstract: Abstract. A MkIV Brewer spectrophotometer has been operating in Athens since 2004. Direct-sun measurements originally scheduled for nitrogen dioxide retrievals were reprocessed to provide aerosol optical depths (AODs) at a wavelength of about 440 nm. A novel retrieval algorithm was specifically developed and the resulting AODs were compared to those obtained from a collocated Cimel filter radiometer belonging to the Aerosol Robotic Network (AERONET). The series are perfectly correlated, with Pearson's correlation coefficients being as large as 0.996 and with 90 % of AOD deviations between the two instruments being within the World Meteorological Organisation (WMO) traceability limits. In order to reach such a high agreement, several instrumental factors impacting the quality of the Brewer retrievals must be taken into account, including sensitivity to the internal temperature, and the state of the external optics and pointing accuracy must be carefully checked. Furthermore, the long-term radiometric stability of the Brewer was investigated and the performances of in situ Langley extrapolations as a way to track the absolute calibration of the Brewer were assessed. Other sources of error, such as slight shifts of the wavelength scale, are discussed and some recommendations to Brewer operators are drawn. Although MkIV Brewers are rarely employed to retrieve AODs in the visible range, they represent a key source of information about aerosol changes in the past three decades and a potential worldwide network for present and future coordinated AOD measurements. Moreover, a better understanding of the AOD retrieval at visible wavelengths will also contribute in improving similar techniques in the more challenging UV range.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2016
    detail.hit.zdb_id: 2505596-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Copernicus GmbH ; 2017
    In:  Atmospheric Measurement Techniques Vol. 10, No. 3 ( 2017-03-09), p. 905-923
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 10, No. 3 ( 2017-03-09), p. 905-923
    Abstract: Abstract. The determination of aerosol properties, especially the aerosol optical depth (AOD) in the ultraviolet (UV) wavelength region, is of great importance for understanding the climatological variability of UV radiation. However, operational retrievals of AOD at the biologically most harmful wavelengths in the UVB are currently only made at very few places. This paper reports on the UVPFR (UV precision filter radiometer) sunphotometer, a stable and robust instrument that can be used for AOD retrievals at four UV wavelengths. Instrument characteristics and results of Langley calibrations at a high-altitude site were presented. It was shown that due to the relatively wide spectral response functions of the UVPFR, the calibration constants (V0) derived from Langley plot calibrations underestimate the true extraterrestrial signals. Accordingly, correction factors were introduced. In addition, the instrument's spectral response functions also result in an apparent air-mass-dependent decrease in ozone optical depth used in the AOD determinations. An adjusted formula for the calculation of AOD, with a correction term dependent on total column ozone amount and ozone air mass, was therefore introduced. Langley calibrations performed 13–14 months apart resulted in sensitivity changes of ≤ 1.1 %, indicating good instrument stability. Comparison with a high-accuracy standard precision filter radiometer, measuring AOD at 368–862 nm wavelengths, showed consistent results. Also, very good agreement was achieved by comparing the UVPFR with AOD at UVB wavelengths derived with a Brewer spectrophotometer, which was calibrated against the UVPFR at an earlier date. Mainly due to non-instrumental uncertainties connected with ozone optical depth, the total uncertainty of AOD in the UVB is higher than that reported from AOD instruments measuring in UVA and visible ranges. However, the precision can be high among instruments using harmonized algorithms for ozone and Rayleigh optical depth as well as for air mass terms. For 4 months of comparison measurements with the UVPFR and a Brewer, the root mean squared AOD differences were found 〈 0.01 at all the 306–320 nm Brewer wavelengths.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2017
    detail.hit.zdb_id: 2505596-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 11, No. 9 ( 2018-09-11), p. 5167-5180
    Abstract: Abstract. Non-ideal angular response of a spectroradiometer is a well-known error source of spectral UV measurements and for that reason instrument specific cosine error correction is applied. In this paper, the performance of the cosine error correction method of Brewer spectral UV measurements in use at the Finnish Meteorological Institute (FMI) is studied. Ideally, the correction depends on the actual sky radiation distribution, which can change even during one spectral scan due to rapid changes in cloudiness. The FMI method has been developed to take into account the changes in the ratio of direct to diffuse sky radiation and it derives a correction coefficient for each measured wavelength. Measurements of five Brewers were corrected for the cosine error and the results were compared to the reference travelling spectroradiometer (QASUME). Measurements were performed during the RBCC-E (Regional Brewer Calibration Center – Europe) X Campaign held at El Arenosillo, Huelva (37∘ N, 7∘ W), Spain, in 2015. In addition, results of site audits of FMI's Brewers in Sodankylä (67∘ N, 27∘ E) and Jokioinen (61∘ N, 24∘ E) during 2002–2014 were studied. The results show that the spectral cosine error correction varied between 4 and 14 %. After that the correction was applied to Brewer UV spectra the relative differences between the QASUME and the Brewer diminished even by 10 %. The study confirms that the method, originally developed for measurements at high latitudes, can be used at mid-latitudes as well. The method is applicable to other Brewers as far as the required input parameters, i.e. total ozone, aerosol information, albedo, instrument specific angular response and slit function are available.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2018
    detail.hit.zdb_id: 2505596-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Copernicus GmbH ; 2022
    In:  Atmospheric Chemistry and Physics Vol. 22, No. 24 ( 2022-12-15), p. 15703-15727
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 22, No. 24 ( 2022-12-15), p. 15703-15727
    Abstract: Abstract. Currently, 55 % of the world's population resides in urban areas and this number is projected to increase to 70 % by 2050. Urban agglomerations with a population over 10 million, characterized as megacities, are expected to be more than 100 by 2100. Such large concentrations of population could boost creativity and economic progress, but also raises several environmental challenges such as air quality degradation. In this study, we investigate the spatial and temporal variability of urban aerosol state of 81 cities with a population over 5 million, relying on daily satellite-based aerosol optical depth (AOD) retrievals, derived at fine spatial resolution (0.1∘×0.1∘), over an 18-year period spanning from 2003 to 2020. According to our results, the lowest long-term mean AOD values worldwide were found in European and American cities (from 0.08 to 0.20). For almost all African and Asian cities, mean AOD ranged from 0.25 up to 0.90, but a considerable dust aerosol contribution (up to 70 %) was found for some of them with associated mean dust optical depth (DOD) values reaching up to 0.4. Mostly Chinese and Indian cities tend to have higher mean AOD values in the areas surrounding their center, while the opposite was found for most of the cities in the rest of the world. High intraannual AOD variability was revealed for the eastern American cities, while lower values were found in Chinese, eastern Indian and the eastern Mediterranean cities. During the study period, statistically significant negative AOD decadal trends were found for East Asian, European and North American cities, with the greatest decrease of −0.1 to −0.3 per decade recorded for the Chinese cities, in which the maximum mean AODs (0.45–0.91) are observed. In most of the US cities, where low mean AOD 〈0.17 was recorded, considerable declining AOD trends were found (−30 % to −50 % per decade). For the rest of Asian, African and South American cities, statistically significant AOD increase was found, with the greatest values of +0.07 to +0.16 per decade recorded for Indian cities. In Bengaluru (India), it is reported the lowest mean AOD value (0.2) and the maximum AOD increase (+69 %), which may be partially attributed to the population growth over the study period. The agreement of the satellite-derived AOD trends against those obtained from ground-based AERONET measurements was examined. For ground-based stations within the geographical limits of the contiguous urban area of the examined cities, a 0.93 correlation for the long-term means of AOD was found and ∼75 % of the derived trends agreed in sign. It was found that the spatial homogeneity within the examined satellite domain and the location of the surface station were key factors that determined their agreement. The present study highlights the vital and essential contribution of spaceborne products to monitor aerosol burden over megacities of the planet towards fulfilling the United Nations Sustainable Development Goal of “sustainable cities and communities”, dealing with urban air quality.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Copernicus GmbH ; 2022
    In:  Atmospheric Measurement Techniques Vol. 15, No. 19 ( 2022-10-11), p. 5667-5680
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 15, No. 19 ( 2022-10-11), p. 5667-5680
    Abstract: Abstract. This work aims to assess differences in the aerosol optical depth (AOD) trend estimations when using high-quality AOD measurements from two different instruments with different technical characteristics and operational (e.g. measurement frequency), calibration and processing protocols. The different types of sun photometers are the CIMEL that is part of AERONET (AErosol RObotic NETwork) and a precision filter radiometer (PFR) that is part of the Global Atmosphere Watch Precision Filter Radiometer network. The analysis operated for two wavelengths (500 and 501 and 870 and 862 nm for CIMEL–PFR) in Davos, Switzerland, for the period 2007–2019. For the synchronous AOD measurements, more than 95 % of the CIMEL–PFR AOD differences are within the WMO-accepted limits, showing very good measurement agreement and homogeneity in calibration and post-correction procedures. AOD trends per decade in AOD for Davos for the 13-year period of analysis were approximately −0.017 and −0.007 per decade for 501 and 862 nm (PFR), while the CIMEL–PFR trend differences have been found 0.0005 and 0.0003, respectively. The linear trend difference for 870 and 862 nm is larger than the linear fit standard error. When calculating monthly AODs using all PFR data (higher instrument frequency) and comparing them with the PFR measurements that are synchronous with CIMEL, the trend differences are smaller than the standard error. Linear trend differences of the CIMEL and PFR time series presented here are not within the calculated trend uncertainties (based on measurement uncertainty) for 870 and 862 nm. On the contrary, PFR trends, when comparing high- and low-measurement-frequency datasets are within such an uncertainty estimation for both wavelengths. Finally, for time-varying trends all trend differences are well within the calculated trend uncertainties.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2505596-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 16, No. 11 ( 2023-06-15), p. 2989-3014
    Abstract: Abstract. We aim to evaluate the NO2 absorption effect in aerosol columnar properties, namely the aerosol optical depth (AOD), Ångström exponent (AE), and single scattering albedo (SSA), derived from sun–sky radiometers in addition to the possible retrieval algorithm improvements by using more accurate characterization of NO2 optical depth from co-located or satellite-based real-time measurements. For this purpose, we employ multiannual (2017–2022) records of AOD, AE, and SSA collected by sun photometers at an urban and a suburban site in the Rome area (Italy) in the framework of both the Aerosol Robotic Network (AERONET) and SKYNET networks. The uncertainties introduced in the aerosol retrievals by the NO2 absorption are investigated using high-frequency observations of total NO2 derived from co-located Pandora spectroradiometer systems in addition to spaceborne NO2 products from the Tropospheric Monitoring Instrument (TROPOMI). For both AERONET and SKYNET, the standard network products were found to systematically overestimate AOD and AE. The average AOD bias found for Rome is relatively low for AERONET (∼ 0.002 at 440 nm and ∼ 0.003 at 380 nm) compared to the retrieval uncertainties but quite a bit higher for SKYNET (∼ 0.007). On average, an AE bias of ∼ 0.02 and ∼ 0.05 was estimated for AERONET and SKYNET, respectively. In general, the correction seems to be low for areas with low columnar NO2 concentrations, but it is still useful for low AODs (〈 0.3), where the majority of observations are found, especially under high NO2 pollution events. For the cases of relatively high NO2 levels (〉 0.7 DU), the mean AOD bias was found within the range 0.009–0.012 for AERONET, depending on wavelength and location, and about 0.018 for SKYNET. The analysis does not reveal any significant impact of the NO2 correction on the derived aerosol temporal trends for the very limited data sets used in this study. However, the effect is expected to become more evident for trends derived from larger data sets and in the case of an important NO2 trend. In addition, the comparisons of the NO2-modified ground-based AOD data with satellite retrievals from the Deep Blue (DB) algorithm of the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) resulted in a slight improvement in the agreement of about 0.003 and 0.006 for AERONET and SKYNET, respectively. Finally, the uncertainty in assumptions on NO2 seems to have a non-negligible impact on the retrieved values of SSA at 440 nm leading to an average positive bias of about 0.02 (2 %) in both locations for high NO2 loadings (〉 0.7 DU).
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2023
    detail.hit.zdb_id: 2505596-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Copernicus GmbH ; 2021
    In:  Atmospheric Measurement Techniques Vol. 14, No. 7 ( 2021-07-15), p. 4947-4957
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 14, No. 7 ( 2021-07-15), p. 4947-4957
    Abstract: Abstract. Satellite estimates of surface UV irradiance have been available since 1978 from the TOMS UV spectrometer and have continued with significantly improved ground resolution using the Ozone Monitoring Instrument (OMI 2004–current) and Sentinel 5 Precursor (S5P 2017–current). The surface UV retrieval algorithm remains essentially the same: it first estimates the clear-sky UV irradiance based on measured ozone and then accounts for the attenuation by clouds and aerosols, applying two consecutive correction factors. When estimating the total aerosol effect in surface UV irradiance, there are two major classes of aerosols to be considered: (1) aerosols that only scatter UV radiation and (2) aerosols that both scatter and absorb UV radiation. The former effect is implicitly included in the measured effective Lambertian-equivalent scene reflectivity (LER), so the scattering aerosol influence is estimated through cloud correction factor. Aerosols that absorb UV radiation attenuate the surface UV radiation more strongly than non-absorbing aerosols of the same extinction optical depth. Moreover, since these aerosols also attenuate the outgoing satellite-measured radiance, the cloud correction factor that treats these aerosols as purely scattering underestimates their aerosol optical depth (AOD), causing underestimation of LER and overestimation of surface UV irradiance. Therefore, for correction of aerosol absorption, additional information is needed, such as a model-based monthly climatology of aerosol absorption optical depth (AAOD). A correction for absorbing aerosols was proposed almost a decade ago and later implemented in the operational OMI and TROPOMI UV algorithms. In this study, however, we show that there is still room for improvement to better account for the solar zenith angle (SZA) dependence and nonlinearity in the absorbing aerosol attenuation, and as a result we propose an improved correction scheme. There are two main differences between the new proposed correction and the one that is currently operational in OMI and TROPOMI UV algorithms. First, the currently operational correction for absorbing aerosols is a function of AAOD only, while the new correction additionally takes the solar zenith angle dependence into account. Second, the second-order polynomial of the new correction takes the nonlinearity in the correction as a function of AAOD better into account, if compared to the currently operational one, and thus better describes the effect by absorbing aerosols over a larger range of AAOD. To illustrate the potential impact of the new correction in the global UV estimates, we applied the current and new proposed correction for global fields of AAOD from the aerosol climatology currently used in OMI UV algorithm, showing a typical differences of ±5 %. This new correction is easy to implement operationally using information of solar zenith angle and existing AAOD climatology.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2505596-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...