GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Material
Publisher
Language
Years
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2020
    In:  Water Vol. 12, No. 5 ( 2020-04-30), p. 1280-
    In: Water, MDPI AG, Vol. 12, No. 5 ( 2020-04-30), p. 1280-
    Abstract: Climate change and urbanization are increasing the intensity and frequency of floods in urban areas. Low Impact Development (LID) is a technique which attenuates runoff and manages urban flooding. However, the impact of climate change and urbanization on the demand or need for LID in cities for both current and future conditions is not known. The primary goal of this research was to evaluate the demand for LID under different climate change and urban growth scenarios based on a physical-based geospatial framework called the hydrological-hydraulic index (HHI). To do this, 12 scenarios considering four climate change and three urbanization conditions were developed. The HHI for three cities in Canada (Toronto, Montreal, and Vancouver) were estimated, evaluated, and compared for these scenarios. The results show that both urbanization and climate change increase the demand for LID. The contribution of climate change and urbanization on LID demand, measured using HHI, varies for each city: in Toronto and Montreal, high rainfall intensity and low permeability mean that climate change is dominant, whereas, in Vancouver, both climate change and urbanization have a similar impact on LID demand. Toronto and Montreal also have a higher overall demand for LID and the rate of increase in demand is higher over the study period. The results of this study provide us with a comprehensive understanding of the effect of climate and urbanization on the demand for LID, which can be used for flood management, urban planning, and sustainable development of cities.
    Type of Medium: Online Resource
    ISSN: 2073-4441
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2521238-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    MDPI AG ; 2019
    In:  Water Vol. 11, No. 11 ( 2019-11-08), p. 2341-
    In: Water, MDPI AG, Vol. 11, No. 11 ( 2019-11-08), p. 2341-
    Abstract: The primary goal of low impact development (LID) is to capture urban stormwater runoff; however, multiple indirect benefits (environmental and socioeconomic benefits) also exist (e.g., improvements to human health and decreased air pollution). Identifying sites with the highest demand or need for LID ensures the maximization of all benefits. This is a spatial decision-making problem that has not been widely addressed in the literature and was the focus of this research. Previous research has focused on finding feasible sites for installing LID, whilst only considering insufficient criteria which represent the benefits of LID (either neglecting the hydrological and hydraulic benefits or indirect benefits). This research considered the hydrological and hydraulic, environmental, and socioeconomic benefits of LID to identify sites with the highest demand for LID. Specifically, a geospatial framework was proposed that uses publicly available data, hydrological-hydraulic principles, and a simple additive weighting (SAW) method within a hierarchical decision-making model. Three indices were developed to determine the LID demand: (1) hydrological-hydraulic index (HHI), (2) socioeconomic index (SEI), and (3) environmental index (ENI). The HHI was developed based on a heuristic model using hydrological-hydraulic principles and validated against the results of a physical model, the Hydrologic Engineering Center-Hydrologic Modeling System model (HEC-HMS). The other two indices were generated using the SAW hierarchical model and then incorporated into the HHI index to generate the LID demand index (LIDDI). The framework was applied to the City of Toronto, yielding results that are validated against historical flooding records.
    Type of Medium: Online Resource
    ISSN: 2073-4441
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2521238-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Elsevier BV ; 2022
    In:  Science of The Total Environment Vol. 831 ( 2022-07), p. 154937-
    In: Science of The Total Environment, Elsevier BV, Vol. 831 ( 2022-07), p. 154937-
    Type of Medium: Online Resource
    ISSN: 0048-9697
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2022
    detail.hit.zdb_id: 121506-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...