GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Chemical Society (ACS) ; 2015
    In:  Environmental Science & Technology Vol. 49, No. 9 ( 2015-05-05), p. 5571-5578
    In: Environmental Science & Technology, American Chemical Society (ACS), Vol. 49, No. 9 ( 2015-05-05), p. 5571-5578
    Type of Medium: Online Resource
    ISSN: 0013-936X , 1520-5851
    RVK:
    Language: English
    Publisher: American Chemical Society (ACS)
    Publication Date: 2015
    detail.hit.zdb_id: 280653-8
    detail.hit.zdb_id: 1465132-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 20, No. 6 ( 2020-03-27), p. 3697-3711
    Abstract: Abstract. Pyruvic acid (CH3C(O)C(O)OH, 2-oxopropanoic acid) is an organic acid of biogenic origin that plays a crucial role in plant metabolism, is present in tropospheric air in both gas-phase and aerosol-phase, and is implicated in the formation of secondary organic aerosols (SOAs). Up to now, only a few field studies have reported mixing ratios of gas-phase pyruvic acid, and its tropospheric sources and sinks are poorly constrained. We present the first measurements of gas-phase pyruvic acid in the boreal forest as part of the IBAIRN (Influence of Biosphere–Atmosphere Interactions on the Reactive Nitrogen budget) field campaign in Hyytiälä, Finland, in September 2016. The mean pyruvic acid mixing ratio during IBAIRN was 96 pptv, with a maximum value of 327 pptv. From our measurements we estimated the overall pyruvic acid source strength and quantified the contributions of isoprene oxidation and direct emissions from vegetation in this monoterpene-dominated forested environment. Further, we discuss the relevance of gas-phase pyruvic acid for atmospheric chemistry by investigating the impact of its photolysis on acetaldehyde and peroxy radical production rates. Our results show that, based on our present understanding of its photochemistry, pyruvic acid is an important source of acetaldehyde in the boreal environment, exceeding ethane and propane oxidation by factors of ∼10 and ∼20.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 21, No. 18 ( 2021-09-28), p. 14333-14349
    Abstract: Abstract. Based on the first measurements of gas-phase pyruvic acid (CH3C(O)C(O)OH) in the boreal forest, we derive effective emission rates of pyruvic acid and compare them with monoterpene emission rates over the diel cycle. Using a data-constrained box model, we determine the impact of pyruvic acid photolysis on the formation of acetaldehyde (CH3CHO) and the peroxy radicals CH3C(O)O2 and HO2 during an autumn campaign in the boreal forest. The results are dependent on the quantum yield (φ) and mechanism of the photodissociation of pyruvic acid and the fate of a likely major product, methylhydroxy carbene (CH3COH). With the box model, we investigate two different scenarios in which we follow the present IUPAC (IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, 2021) recommendations with φ = 0.2 (at 1 bar of air), and the main photolysis products (60 %) are acetaldehyde + CO2 with 35 % C–C bond fission to form HOCO and CH3CO (scenario A). In the second scenario (B), the formation of vibrationally hot CH3COH (and CO2) represents the main dissociation pathway at longer wavelengths (∼ 75 %) with a ∼ 25 % contribution from C–C bond fission to form HOCO and CH3CO (at shorter wavelengths). In scenario 2 we vary φ between 0.2 and 1 and, based on the results of our theoretical calculations, allow the thermalized CH3COH to react with O2 (forming peroxy radicals) and to undergo acid-catalysed isomerization to CH3CHO. When constraining the pyruvic acid to measured mixing ratios and independent of the model scenario, we find that the photolysis of pyruvic acid is the dominant source of CH3CHO with a contribution between ∼ 70 % and 90 % to the total production rate. We find that the photolysis of pyruvic acid is also a major source of the acetylperoxy radical, with contributions varying between ∼ 20 % and 60 % dependent on the choice of φ and the products formed. HO2 production rates are also enhanced, mainly via the formation of CH3O2. The elevated production rates of CH3C(O)O2 and HO2 and concentration of CH3CHO result in significant increases in the modelled mixing ratios of CH3C(O)OOH, CH3OOH, HCHO, and H2O2.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 18, No. 5 ( 2018-03-15), p. 3799-3815
    Abstract: Abstract. We present the first direct measurements of NO3 reactivity (or inverse lifetime, s−1) in the Finnish boreal forest. The data were obtained during the IBAIRN campaign (Influence of Biosphere-Atmosphere Interactions on the Reactive Nitrogen budget) which took place in Hyytiälä, Finland during the summer/autumn transition in September 2016. The NO3 reactivity was generally very high with a maximum value of 0.94 s−1 and displayed a strong diel variation with a campaign-averaged nighttime mean value of 0.11 s−1 compared to a daytime value of 0.04 s−1. The highest nighttime NO3 reactivity was accompanied by major depletion of canopy level ozone and was associated with strong temperature inversions and high levels of monoterpenes. The daytime reactivity was sufficiently large that reactions of NO3 with organic trace gases could compete with photolysis and reaction with NO. There was no significant reduction in the measured NO3 reactivity between the beginning and end of the campaign, indicating that any seasonal reduction in canopy emissions of reactive biogenic trace gases was offset by emissions from the forest floor. Observations of biogenic hydrocarbons (BVOCs) suggested a dominant role for monoterpenes in determining the NO3 reactivity. Reactivity not accounted for by in situ measurement of NO and BVOCs was variable across the diel cycle with, on average, ≈ 30 % “missing” during nighttime and ≈ 60 % missing during the day. Measurement of the NO3 reactivity at various heights (8.5 to 25 m) both above and below the canopy, revealed a strong nighttime, vertical gradient with maximum values closest to the ground. The gradient disappeared during the daytime due to efficient vertical mixing.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2018
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 19, No. 15 ( 2019-08-15), p. 10391-10403
    Abstract: Abstract. The formation of alkyl nitrates in various oxidation processes taking place throughout the diel cycle can represent an important sink of reactive nitrogen and mechanism for chain termination in atmospheric photo-oxidation cycles. The low-volatility alkyl nitrates (ANs) formed from biogenic volatile organic compounds (BVOCs), especially terpenoids, enhance rates of production and growth of secondary organic aerosol. Measurements of the NO3 reactivity and the mixing ratio of total alkyl nitrates (ΣANs) in the Finnish boreal forest enabled assessment of the relative importance of NO3-, O3- and OH-initiated formation of alkyl nitrates from BVOCs in this environment. The high reactivity of the forest air towards NO3 resulted in reactions of the nitrate radical, with terpenes contributing substantially to formation of ANs not only during the night but also during daytime. Overall, night-time reactions of NO3 accounted for 49 % of the local production rate of ANs, with contributions of 21 %, 18 % and 12 % for NO3, OH and O3 during the day. The lifetimes of the gas-phase ANs formed in this environment were on the order of 2 h due to efficient uptake to aerosol (and dry deposition), resulting in the transfer of reactive nitrogen from anthropogenic sources to the forest ecosystem.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2019
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2023
    In:  Geophysical Research Letters Vol. 50, No. 19 ( 2023-10-16)
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 50, No. 19 ( 2023-10-16)
    Abstract: Carbonyl sulfide (OCS) atmospheric lifetime of 2.1 ± 1.3 years and lowermost stratospheric lifetime of 47 ± 16 years were determined Total flux of OCS into the stratosphere estimated as 137 GgS a −1 , of which 60% is estimated to be transported back into the troposphere The lower back transport estimate might explain the current missing stratospheric sulfate aerosol burden
    Type of Medium: Online Resource
    ISSN: 0094-8276 , 1944-8007
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2023
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Wiley ; 2016
    In:  Journal of Mass Spectrometry Vol. 51, No. 2 ( 2016-02), p. 141-149
    In: Journal of Mass Spectrometry, Wiley, Vol. 51, No. 2 ( 2016-02), p. 141-149
    Abstract: Ambient desorption/ionization mass spectrometry (MS) has gained growing interest during the last decade due to its high analytical performance and yet simplicity. Here, one of the recently developed ambient desorption/ionization MS sources, the flowing atmospheric‐pressure afterglow (FAPA) source, was investigated in detail regarding background ions and typical ionization patterns in the positive as well as the negative ion mode for a variety of compound classes, comprising alkanes, alcohols, aldehydes, ketones, carboxylic acids, organic peroxides and alkaloids. A broad range of signals for adducts and losses was found, besides the usually emphasized detection of quasimolecular ions, i.e. [M + H] + and [M − H] − in the positive and the negative mode, respectively. It was found that FAPA–MS is best suited for polar analytes containing nitrogen and/or oxygen functionalities, e.g. carboxylic acids, with low molecular weights and relatively high vapor pressures. In addition, the source was used in proof‐of‐principle studies, illustrating the capabilities and limitations of the technique: Firstly, traces of cocaine were detected and unambiguously identified on euro banknotes using FAPA ionization in combination with tandem MS, suggesting a correlation between cocaine abundance and age of the banknote. Secondly, FAPA–MS was used for the identification of acidic marker compounds in organic aerosol samples, indicating yet‐undiscovered matrix and sample surface effects of ionization pathways in the afterglow region. Copyright © 2016 John Wiley & Sons, Ltd.
    Type of Medium: Online Resource
    ISSN: 1076-5174 , 1096-9888
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2016
    detail.hit.zdb_id: 2197367-2
    detail.hit.zdb_id: 1472468-6
    detail.hit.zdb_id: 7414-7
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 14, No. 3 ( 2021-03-04), p. 1817-1831
    Abstract: Abstract. A gas detection system has been developed, characterized, and deployed for pressurized gas-phase sample analyses and near-real-time online measurements. It consists of a cryogenic pre-concentrator (CryoTrap), a gas chromatograph (GC), and a new high-resolution atomic emission detector (AED III HR). Here the CryoTrap–GC–AED instrumental setup is presented, and the performance for iodine (1635 ± 135 counts I atom−1 pptv−1), sulfur (409 ± 57 counts S atom−1 pptv−1), carbon (636 ± 69 counts C atom−1 pptv−1), bromine (9.1 ± 1.8 counts Br atom−1 pptv−1), and nitrogen (28 ± 2 counts N atom−1 pptv−1) emission lines is reported and discussed. The limits of detection (LODs) are in the low parts per trillion by volume range (0.5–9.7 pptv), and the signal is linear to at least 4 orders of magnitude, which makes it a suitable method for diverse volatile organic compound (VOC) measurements in the atmosphere, even in remote unpolluted regions. The new system was utilized in a field study in a boreal forest at Hyytiälä, Finland, in late summer 2016, which made monoterpene measurements possible among other VOCs. Furthermore, pressurized global whole-air samples, collected on board the Lufthansa Airbus A340-600 IAGOS–CARIBIC aircraft in the upper troposphere and lower stratosphere region, were measured with the new setup, providing data for many VOCs, including the long-lived organosulfur compound carbonyl sulfide.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2505596-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2018
    In:  npj Climate and Atmospheric Science Vol. 1, No. 1 ( 2018-09-11)
    In: npj Climate and Atmospheric Science, Springer Science and Business Media LLC, Vol. 1, No. 1 ( 2018-09-11)
    Abstract: The hydroxyl (OH) radical is the key oxidant in the global atmosphere as it controls the concentrations of toxic gases like carbon monoxide and climate relevant gases like methane. In some regions, oxidation by chlorine (Cl) radical is also important, and in the stratosphere both OH and Cl radicals impact ozone. An empirical method is presented to determine effective OH concentrations in the troposphere and lower stratosphere, based on CH 4 , CH 3 Cl, and SF 6 data from aircraft measurements (IAGOS-CARIBIC) and a ground-based station (NOAA). Tropospheric OH average values of 10.9 × 10 5 ( σ  = 9.6 × 10 5 ) molecules cm −3 and stratospheric OH average values of 1.1 × 10 5 ( σ  = 0.8 × 10 5 ) molecules cm −3 were derived over mean ages derived from SF 6 . Using CH 4 led to higher OH estimates due to the temperature dependence of the CH 4  + OH reaction in the troposphere and due to the presence of Cl in the stratosphere. Exploiting the difference in effective OH calculated from CH 3 Cl and CH 4 we determine the main altitude for tropospheric CH 4 oxidation to be 4.5 ~ 10.5 km and the average Cl radical concentration in the lower stratosphere to be 1.1 × 10 4 ( σ  = 0.6 × 10 4 ) molecules cm −3 (with a 35% measurement uncertainty). Furthermore, the data are used to examine the temporal trend in annual average stratospheric OH and Cl radical concentrations between 2010 and 2015. The year 2013 showed highest stratospheric OH and lowest Cl but no clear temporal trend was observed in the data in this period. These data serve as a baseline for future studies of stratospheric circulation changes.
    Type of Medium: Online Resource
    ISSN: 2397-3722
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2018
    detail.hit.zdb_id: 2925628-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 115, No. 50 ( 2018-12-11)
    Abstract: Wildfires inject large amounts of black carbon (BC) particles into the atmosphere, which can reach the lowermost stratosphere (LMS) and cause strong radiative forcing. During a 14-month period of observations on board a passenger aircraft flying between Europe and North America, we found frequent and widespread biomass burning (BB) plumes, influencing 16 of 160 flight hours in the LMS. The average BC mass concentrations in these plumes (∼140 ng·m −3 , standard temperature and pressure) were over 20 times higher than the background concentration (∼6 ng·m −3 ) with more than 100-fold enhanced peak values (up to ∼720 ng·m −3 ). In the LMS, nearly all BC particles were covered with a thick coating. The average mass equivalent diameter of the BC particle cores was ∼120 nm with a mean coating thickness of ∼150 nm in the BB plume and ∼90 nm with a coating of ∼125 nm in the background. In a BB plume that was encountered twice, we also found a high diameter growth rate of ∼1 nm·h −1 due to the BC particle coatings. The observed high concentrations and thick coatings of BC particles demonstrate that wildfires can induce strong local heating in the LMS and may have a significant influence on the regional radiative forcing of climate.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2018
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...