GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    International Union of Crystallography (IUCr) ; 2014
    In:  Acta Crystallographica Section A Foundations and Advances Vol. 70, No. a1 ( 2014-08-05), p. C1556-C1556
    In: Acta Crystallographica Section A Foundations and Advances, International Union of Crystallography (IUCr), Vol. 70, No. a1 ( 2014-08-05), p. C1556-C1556
    Abstract: LixMn2O4 is attracting much interest as a positive electrode material for Li-ion rechargeable batteries. Redox orbitals of LixMn2O4 under the charge or discharge process are not fully understood yet. Some band calculations have pointed out that intercalated Li 2s electrons occupy Mn sites or down-spin Mn 3d bands [1,2]. On the other hand molecular orbital calculation has reported the Li 2s electrons occupy O sites [3] . To clarify the redox orbital is important to understand the electrochemical reaction in the electrodes. In this study we have investigated the redox orbitals in LixMn2O4 by X-ray Compton scattering. Compton profiles were measured at BL08W of SPring-8, Japan. The energy of incident X-rays were 115keV and the scattering angle was 165 degrees. Energy spectra of Compton scattered X-rays were measured using a two-dimensional position sensitive detector. The measurements were performed under room temperature and vacuum conditions. Samples are polycrystalline of LixMn2O4 (x=0.5, 1.1, 1.2, 1.8 and 2.0). In order to clarify the redox orbitals of LixMn2O4, we obtained difference Compton profiles which represent the incremental electronic states on Li intercalation. Comparing the results with KKR-CPA and DFT calculations, we found that the O 2p bands play an important role for the redox process in LixMn2O4 with 0 〈 x 〈 2.
    Type of Medium: Online Resource
    ISSN: 2053-2733
    Language: Unknown
    Publisher: International Union of Crystallography (IUCr)
    Publication Date: 2014
    detail.hit.zdb_id: 2020844-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...