GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2017
    In:  Ocean Dynamics Vol. 67, No. 6 ( 2017-6), p. 673-690
    In: Ocean Dynamics, Springer Science and Business Media LLC, Vol. 67, No. 6 ( 2017-6), p. 673-690
    Type of Medium: Online Resource
    ISSN: 1616-7341 , 1616-7228
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2017
    detail.hit.zdb_id: 2063267-8
    detail.hit.zdb_id: 201122-0
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 8 ( 2021-3-24)
    Abstract: A novel pan-European marine model ensemble was established, covering nearly all seas under the regulation of the Marine Strategy Framework Directive (MSFD), with the aim of providing a consistent assessment of the potential impacts of riverine nutrient reduction scenarios on marine eutrophication indicators. For each sea region, up to five coupled biogeochemical models from institutes all over Europe were brought together for the first time. All model systems followed a harmonised scenario approach and ran two simulations, which varied only in the riverine nutrient inputs. The load reductions were evaluated with the catchment model GREEN and represented the impacts due to improved management of agriculture and wastewater treatment in all European river systems. The model ensemble, comprising 15 members, was used to assess changes to the core eutrophication indicators as defined within MSFD Descriptor 5. In nearly all marine regions, riverine load reductions led to reduced nutrient concentrations in the marine environment. However, regionally the nutrient input reductions led to an increase in the non-limiting nutrient in the water, especially in the case of phosphate concentrations in the Black Sea. Further core eutrophication indicators, such as chlorophyll-a, bottom oxygen and the Trophic Index TRIX, improved nearly everywhere, but the changes were less pronounced than for the inorganic nutrients. The model ensemble displayed strong consistency and robustness, as most if not all models indicated improvements in the same areas. There were substantial differences between the individual seas in the speed of response to the reduced nutrient loads. In the North Sea ensemble, a stable plateau was reached after only three years, while the simulation period of eight years was too short to obtain steady model results in the Baltic Sea. The ensemble exercise confirmed the importance of improved management of agriculture and wastewater treatments in the river catchments to reduce marine eutrophication. Several shortcomings were identified, the outcome of different approaches to compute the mean change was estimated and potential improvements are discussed to enhance policy support. Applying a model ensemble enabled us to obtain highly robust and consistent model results, substantially decreasing uncertainties in the scenario outcome.
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 9 ( 2022-3-10)
    Abstract: In this study, the abundance and properties (size, shape, and polymer type) of microplastics (MPs) in sea surface water samples, collected during two sampling campaigns over 2018–2019, in four coastal areas of the Mediterranean Sea (Saronikos Gulf, LIgurian Sea, Gulf of Lion, and Gabes Gulf) were investigated. Coupled hydrodynamic/particle drift model simulations with basin-scale Mediterranean and high resolution nested models were used to provide a better understanding on the variability of the abundance/size of MPs, originating from wastewater and river runoff, in the four areas. Different size classes of MPs were considered in the model, taking into account biofouling induced sinking, as a possible mechanism of MPs removal from the surface. The Gabes Gulf showed the highest mean MPs abundance (0.073–0.310 items/m 2 ), followed by Ligurian Sea (0.061–0.134 items/m 2 ), Saronikos Gulf (0.047–0.080 items/m 2 ), and Gulf of Lion (0.029–0.032 items/m 2 ). Overall, the observed MPs abundance and size distribution was reasonably well reproduced by the model in the four different areas, except an overestimation of small size contribution in Saronikos Gulf. The basin-scale simulation revealed a strong decrease of smaller size MPs in offshore areas, due to biofouling induced sinking, with larger (floating) MPs being able to travel longer distances in the open sea. A significant impact of waves drift and advection of MPs from non-local sources was identified from model simulations, particularly in the Gulfs of Lion and Gabes, having a stronger effect on larger microplastics. In Gabes Gulf, most MPs originated from offshore areas, being mainly (floating) larger size classes, as suggested by the observed quite small contribution of & lt;1 mm particles. The MPs observed abundance distribution in each area could be partly explained by the adopted sources distribution. The modeling tools proposed in this study provide useful insight to gain a better understanding on MPs dynamics in the marine environment and assess the current status of plastic pollution on basin and regional scale to further develop environmental management action for the mitigation of plastic pollution in the Mediterranean Sea.
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Marine Science Vol. 8 ( 2022-1-10)
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 8 ( 2022-1-10)
    Abstract: Micro- and macro-plastics pollution is a growing threat for marine biodiversity, ecosystem functioning, and consequently human wellbeing. Numerical models that consider main sources of plastics and simulate their dispersal characteristics are unique tools for exploring plastic pollution in marine protected areas (MPAs). Here, we used a Lagrangian plastic drift model, taking into account various sizes/types of plastic litter, originating from major land-based sources (coastal cities and rivers), to predict plastic accumulation zones in protected areas of the Mediterranean Sea (i.e., nationally designated MPAs, Natura 2000 sites, and Cetacean Critical Habitats). The model predicted that the size of plastic litters plays a key role in their dispersion and ultimate destination (i.e., larger litter travel longer distances). Most of the studied Mediterranean countries (13 out of 15) had at least one national MPA with over 55% of macroplastics originating from sources beyond their borders. Consequently, in many cases, local efforts to reduce plastic pollution in protected areas would be insufficient, especially for macroplastics management. Transboundary collaboration among Mediterranean countries is critical for implementing successful management plans against plastic pollution in their territorial waters and specifically in MPAs.
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Frontiers Media SA ; 2021
    In:  Frontiers in Marine Science Vol. 8 ( 2021-10-4)
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 8 ( 2021-10-4)
    Abstract: The Mediterranean is considered a hot-spot for plastic pollution, due to its semi-enclosed nature and heavily populated coastal areas. In the present study, a basin-scale coupled hydrodynamic/particle drift model was used to track the pathways and fate of plastics from major land-based sources (coastal cities and rivers), taking into account of the most important processes (advection, stokes drift, vertical and horizontal mixing, sinking, wind drag, and beaching). A hybrid ensemble Kalman filter algorithm was implemented to correct the near- surface circulation, assimilating satellite data (sea surface height, temperature) in the hydrodynamic model. Different size classes and/or types of both micro- and macroplastics were considered in the model. Biofouling induced sinking was explicitly described, as a possible mechanism of microplastics removal from the surface. A simplified parameterization of size-dependent biofilm growth has been adopted, as a function of bacterial biomass (obtained from a biogeochemical model simulation), being considered a proxy for the biofouling community. The simulated distributions for micro- and macroplastics were validated against available observations, showing reasonable agreement, both in terms of magnitude and horizontal variability. An 8-year simulation was used to identify micro- and macroplastics accumulation patterns in the surface layer, water column, seafloor and beaches. The impact of different processes (vertical mixing, biofouling, and wind/wave drift) was identified through a series of sensitivity experiments. For both micro- and macroplastics, distributions at sea surface were closely related to the adopted sources. The microplastics concentration was drastically reduced away from source areas, due to biofouling induced sinking, with their size distribution dominated by larger ( & gt;1 mm) size classes in open sea areas, in agreement with observations. High concentration patches of floating plastics were simulated in convergence areas, characterized by anticyclonic circulation. The distribution of macroplastics on beaches followed the predominant southeastward wind/wave direction. In the water column, a sub-surface maximum in microplastics abundance was simulated, with increasing contribution of smaller particles in deeper layers. Accumulation of microplastics on the seafloor was limited in relatively shallow areas ( & lt;500 m), with bottom depth below their relaxation depth due to defouling. The simulated total amount of floating plastics (∼3,760 tonnes) is comparable with estimates from observations.
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Scientia Marina, Editorial CSIC, Vol. 76, No. S1 ( 2012-09-04), p. 249-259
    Type of Medium: Online Resource
    ISSN: 1886-8134 , 0214-8358
    Uniform Title: A new space technology for ocean observation: the SMOS mission
    URL: Issue
    Language: English , English
    Publisher: Editorial CSIC
    Publication Date: 2012
    detail.hit.zdb_id: 2173503-7
    detail.hit.zdb_id: 1030881-7
    SSG: 21,3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...