GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 72, No. 8_Supplement ( 2012-04-15), p. 2915-2915
    Abstract: cMET and RON are receptor tyrosine kinases of the MET proto-oncogene family that are activated by their respective ligands HGF and MSP. Signaling through the cMET/HGF system can be deregulated in cancer by HGF-dependent autocrine activation, gene amplification, and/or the presence of activating mutations, among others, while for RON, constitutively active variants generated by alternative splicing or methylation-dependent promoter usage [short-form RON (sfRON)] have been identified. Approaches to abrogate aberrant cMET and RON signaling that have led to agents in clinical trials include inhibiting their kinase function with small molecules. We report here the discovery and characterization of OSI-296, a dual inhibitor of cMET and RON. The compound exhibited selectivity in a panel of 96 kinases with potent activity against cMET, including common Y1230 mutants, and RON. OSI-296 blocked cMET autophosphorylation in MKN45 cells, resulting in dose-dependent inhibition of downstream ERK, AKT, and STAT3 phosphorylation. It also showed potent cellular activity in ELISA-format sfRON and caRON cell mechanistic assays that we developed, resulting in dose-dependent inhibition of downstream ERK and AKT phosphorylation. OSI-296 showed a PK profile in rodents suitable for oral dosing with & gt;70% bioavailability. In multiple xenografts models (cMET: MKN45, SNU-5, U87MG; RON: caRON), significant tumor growth inhibition was observed upon oral dosing with regression at higher doses. OSI-296 was very well tolerated with little body weight loss and no adverse effects even at the highest tested dose of 300 mg/kg p.o. qdx14. Solid PK/PD/TGI correlations have been established wherein & gt;90% inhibition of cMET or RON phosphorylation sustained over 24 h by OSI-296 translated to 100% TGI. In summary, OSI-296 was shown to be a well tolerated, dual inhibitor of cMET and RON with in vivo activity in mouse xenografts models for both targets upon oral dosing. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr 2915. doi:1538-7445.AM2012-2915
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2012
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Molecular Cancer Therapeutics, American Association for Cancer Research (AACR), Vol. 4, No. 8 ( 2005-08-01), p. 1186-1197
    Abstract: OSI-930, a potent thiophene inhibitor of the Kit, KDR, and platelet-derived growth factor receptor tyrosine kinases, was used to selectively inhibit tyrosine phosphorylation downstream of juxtamembrane mutant Kit in the mast cell leukemia line HMC-1. Inhibition of Kit kinase activity resulted in a rapid dephosphorylation of Kit and inhibition of the downstream signaling pathways. Attenuation of Ras-Raf-Erk (phospho-Erk, phospho-p38), phosphatidyl inositol-3′ kinase (phospho-p85, phospho-Akt, phospho-S6), and signal transducers and activators of transcription signaling pathways (phospho-STAT3/5/6) were measured by affinity liquid chromatography tandem mass spectrometry, by immunoblot, and by tissue microarrays of fixed cell pellets. To more globally define additional components of Kit signaling temporally altered by kinase inhibition, a novel multiplex quantitative isobaric peptide labeling approach was used. This approach allowed clustering of proteins by temporal expression patterns. Kit kinase, which dephosphorylates rapidly upon kinase inhibition, was shown to regulate both Shp-1 and BDP-1 tyrosine phosphatases and the phosphatase-interacting protein PSTPIP2. Interactions with SH2 domain adapters [growth factor receptor binding protein 2 (Grb2), Cbl, Slp-76] and SH3 domain adapters (HS1, cortactin, CD2BP3) were attenuated by inhibition of Kit kinase activity. Functional crosstalk between Kit and the non–receptor tyrosine kinases Fes/Fps, Fer, Btk, and Syk was observed. Inhibition of Kit modulated phosphorylation-dependent interactions with pathways controlling focal adhesion (paxillin, leupaxin, p130CAS, FAK1, the Src family kinase Lyn, Wasp, Fhl-3, G25K, Ack-1, Nap1, SH3P12/ponsin) and septin-actin complexes (NEDD5, cdc11, actin). The combined use of isobaric protein quantitation and expression clustering, immunoblot, and tissue microarray strategies allowed temporal measurement signaling pathways modulated by mutant Kit inhibition in a model of mast cell leukemia.
    Type of Medium: Online Resource
    ISSN: 1535-7163 , 1538-8514
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2005
    detail.hit.zdb_id: 2062135-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Bioorganic & Medicinal Chemistry Letters, Elsevier BV, Vol. 23, No. 15 ( 2013-08), p. 4381-4387
    Type of Medium: Online Resource
    ISSN: 0960-894X
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2013
    detail.hit.zdb_id: 1501505-1
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Society for Horticultural Science ; 1974
    In:  HortScience Vol. 9, No. 6 ( 1974-12), p. 590-591
    In: HortScience, American Society for Horticultural Science, Vol. 9, No. 6 ( 1974-12), p. 590-591
    Abstract: A crude polyphenol oxidase (PPO) preparation extracted from ‘Redhaven’ peaches ( Prunus persica (L.) Batsch) showed only catecholase but not cresolase enzyme activity. The PPO activity increased sharply near the end of maturation. A shift from a single pH optimum at 6.2 to dual optima at pH 6.0 and 6.5 during maturation possibly indicates synthesis of new isozymes. The temperature optimum for peach PPO was near 37°C and the Michaelis constant was 2.9 × l0 -2 M when catechol was used as substrate. The peach PPO remained very active even at 3°.
    Type of Medium: Online Resource
    ISSN: 0018-5345 , 2327-9834
    Language: Unknown
    Publisher: American Society for Horticultural Science
    Publication Date: 1974
    detail.hit.zdb_id: 2040198-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...