GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2010
    In:  Nature Cell Biology Vol. 12, No. 11 ( 2010-11), p. 1094-1100
    In: Nature Cell Biology, Springer Science and Business Media LLC, Vol. 12, No. 11 ( 2010-11), p. 1094-1100
    Type of Medium: Online Resource
    ISSN: 1465-7392 , 1476-4679
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2010
    detail.hit.zdb_id: 1494945-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 134, No. Supplement_1 ( 2019-11-13), p. 3229-3229
    Abstract: Background Chimeric antigen receptor therapy (CAR-T) directed against CD19 has demonstrated efficacy in patients with relapsed/refractory (R/R) B-cell malignancies. Delayed hematopoietic recovery with grade 3/4 neutropenia and thrombocytopenia, requiring extended growth factor administration or transfusions, has been observed in patients undergoing CAR-T cell therapy, although the factors influencing recovery are poorly understood. In this study, we performed multivariable analyses to identify factors associated with hematopoietic recovery in patients undergoing CD19 CAR-T cell therapy. Methods We retrospectively analyzed 125 patients with R/R acute lymphoblastic leukemia (ALL), non-Hodgkin lymphoma (NHL), and chronic lymphocytic leukemia (CLL), treated with CD19-targeted CAR-T cells on a phase 1/2 clinical trial in our institution (NCT01865617). Patients receiving more than one CAR-T infusion were excluded. Criteria for neutropenia, thrombocytopenia, and recovery were defined as per the Center for International Blood and Marrow Transplant Research (CIBMTR) reporting guidelines: neutropenia, absolute neutrophil count (ANC) ≤ 500/mm3; thrombocytopenia, platelet (Plt) count ≤ 20 x 109/L; neutrophil recovery, ANC 〉 0.5 x 109/L for three consecutive laboratory values obtained on different days irrespective of growth factor administration; platelet recovery, Plt 〉 20 x 109/L for three consecutive values obtained on different days in the absence of platelet transfusion for seven days. For competing risk analysis, an event was defined as having achieved ANC or Plt recovery, with the following considered as competing events: death, new cytotoxic therapy, relapse with marrow involvement in the absence of ANC or platelet recovery. Patients who never met the CIBMTR criteria for neutropenia of thrombocytopenia were considered as having recovered at time = 0. To identify factors associated with impaired hematopoietic recovery after CD19 CAR-T cell therapy, patient-, disease- and CAR-T cell therapy-related variables were included in a multivariable Fine and Gray model prior to variable selection using LASSO penalization (Table 2 footnote). Results We included 125 patients (ALL, n=44; CLL, n=37; NHL, n=44) with a median age of 55 (range, 20-76). Patients were heavily pre-treated with a median of 4 prior therapies (range, 1-10); 31% had undergone prior autologous or allogeneic hematopoietic cell transplantation (HCT). Median ANC and Plt prior to lymphodepletion were 2 x 109/L (range 0-23) and 112 x 109/L, range 3-425), respectively. Patient and treatment characteristics are summarized in Table 1. ANC and Plt recovery after CD19 CAR-T cell therapy were observed in 91% (ALL, 86%; CLL, 92%; NHL, 95%) and 86% (ALL, 86%; CLL, 86%; NHL, 84%) of patients, respectively. Median time to ANC recovery was 9 days and the probability of ANC recovery at day 28, 60, and 90 was 80% (95%CI, 73-87), 86% (95%CI, 80-92) and 89% (95%CI, 83-94), respectively. The probability of platelet recovery on the day of CAR-T cell infusion was 55% (95%CI, 46-64); rising to 74% (95%CI, 67-82), 83% (95%CI, 76-90), and 84% (95%CI, 77-90) at day 28, 60, and 90, respectively. A competing event was always observed in patients without ANC or Plt recovery. In multivariable analysis, higher pre-lymphodepletion Plt count (HR=1.08 per 25 x 109/L increase, p=0.006) and higher peak CD8+ CAR-T cells in blood (HR=1.47 per log10 cells/µL increase, p 〈 0.001) were associated with faster ANC recovery. ALL diagnosis and higher cytokine release syndrome (CRS) grade were associated with slower ANC recovery (CLL vs ALL, HR=1.60, p=0.02; NHL vs ALL, HR=2.07, p=0.007). Higher CRS grade was also associated with slower Plt recovery (HR=0.67 per grade increase, p 〈 0.001). Higher pre-lymphodepletion platelet count and higher peak CD8+ CAR-T cell in blood were associated with faster platelet recovery (HR=1.08 per 25 x 109/L increase, p=0.001; HR=1.41 per log10 cells/µL increase, p 〈 0.001). Of note, lymphodepletion intensity did not seem to affect hematopoietic recovery. Table 2 summarizes the results of the multivariable analysis. Figure 1 shows ANC and Plt recovery by CRS grade. Conclusion We identified CRS grade as independently associated with impaired hematopoietic recovery after CD19 CAR-T cell therapy. Our findings suggest that the prevention of CRS may improve hematopoietic recovery after CD19 CAR-T cell therapy. Figure Disclosures Hirayama: DAVA Oncology: Honoraria. Maloney:Celgene,Kite Pharma: Honoraria, Research Funding; BioLine RX, Gilead,Genentech,Novartis: Honoraria; Juno Therapeutics: Honoraria, Patents & Royalties: patients pending , Research Funding; A2 Biotherapeutics: Honoraria, Other: Stock options . Turtle:Caribou Biosciences: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Nektar Therapeutics: Other: Ad hoc advisory board member, Research Funding; Allogene: Other: Ad hoc advisory board member; Novartis: Other: Ad hoc advisory board member; Juno Therapeutics: Patents & Royalties: Co-inventor with staff from Juno Therapeutics; pending, Research Funding; Precision Biosciences: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Eureka Therapeutics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; T-CURX: Membership on an entity's Board of Directors or advisory committees; Kite/Gilead: Other: Ad hoc advisory board member; Humanigen: Other: Ad hoc advisory board member.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2011
    In:  Proceedings of the National Academy of Sciences Vol. 108, No. 6 ( 2011-02-08), p. 2205-2209
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 108, No. 6 ( 2011-02-08), p. 2205-2209
    Abstract: The inositol pyrophosphate, diphosphoinositol pentakisphosphate, regulates p53 and protein kinase Akt signaling, and its aberrant increase in cells has been implicated in apoptosis and insulin resistance. Inositol hexakisphosphate kinase-2 (IP6K2), one of the major inositol pyrophosphate synthesizing enzymes, mediates p53-linked apoptotic cell death. Casein kinase-2 (CK2) promotes cell survival and is upregulated in tumors. We show that CK2 mediated cell survival involves IP6K2 destabilization. CK2 physiologically phosphorylates IP6K2 at amino acid residues S347 and S356 contained within a PEST sequence, a consensus site for ubiquitination. HCT116 cells depleted of IP6K2 are resistant to cell death elicited by CK2 inhibitors. CK2 phosphorylation at the degradation motif of IP6K2 enhances its ubiquitination and subsequent degradation. IP6K2 mutants at the CK2 sites that are resistant to CK2 phosphorylation are metabolically stable.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2011
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 104, No. 39 ( 2007-09-25), p. 15305-15310
    Abstract: In a previous study, we showed that the inositol pyrophosphate diphosphoinositol pentakisphosphate (IP 7 ) physiologically phosphorylates mammalian and yeast proteins. We now report that this phosphate transfer reflects pyrophosphorylation. Thus, proteins must be prephosphorylated by ATP to prime them for IP 7 phosphorylation. IP 7 phosphorylates synthetic phosphopeptides but not if their phosphates have been masked by methylation or pyrophosphorylation. Moreover, IP 7 phosphorylated peptides are more acid-labile and more resistant to phosphatases than ATP phosphorylated peptides, indicating a different type of phosphate bond. Pyrophosphorylation may represent a novel mode of signaling to proteins.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2007
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Biology of Blood and Marrow Transplantation, Elsevier BV, Vol. 26, No. 3 ( 2020-03), p. S313-
    Type of Medium: Online Resource
    ISSN: 1083-8791
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2020
    detail.hit.zdb_id: 3056525-X
    detail.hit.zdb_id: 2057605-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2009
    In:  Proceedings of the National Academy of Sciences Vol. 106, No. 13 ( 2009-03-31), p. 5171-5176
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 106, No. 13 ( 2009-03-31), p. 5171-5176
    Abstract: Glutathione (GSH) and bilirubin are prominent endogenous antioxidant cytoprotectants. Despite tissue levels that are thousands of times lower than GSH, bilirubin is effective because of the biosynthetic cycle wherein it is generated from biliverdin by biliverdin reductase (BVR). When bilirubin acts as an antioxidant, it is oxidized to biliverdin, which is immediately reduced by BVR to bilirubin. Why does the body employ both of these 2 distinct antioxidant systems? We show that the water-soluble GSH primarily protects water soluble proteins, whereas the lipophilic bilirubin protects lipids from oxidation. Mice with deletion of heme oxygenase-2, which generates biliverdin, display greater lipid than protein oxidation, while the reverse holds for GSH depletion. RNA interference depletion of BVR increases oxidation of lipids more than protein. Depletion of BVR or GSH augments cell death in an oxidant-specific fashion.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2009
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Cell Metabolism, Elsevier BV, Vol. 13, No. 2 ( 2011-02), p. 215-221
    Type of Medium: Online Resource
    ISSN: 1550-4131
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2011
    detail.hit.zdb_id: 2174469-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Informa UK Limited ; 2022
    In:  Blood and Lymphatic Cancer: Targets and Therapy Vol. Volume 12 ( 2022-05), p. 55-79
    In: Blood and Lymphatic Cancer: Targets and Therapy, Informa UK Limited, Vol. Volume 12 ( 2022-05), p. 55-79
    Type of Medium: Online Resource
    ISSN: 1179-9889
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 2022
    detail.hit.zdb_id: 2673412-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2010
    In:  Proceedings of the National Academy of Sciences Vol. 107, No. 49 ( 2010-12-07), p. 20947-20951
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 107, No. 49 ( 2010-12-07), p. 20947-20951
    Abstract: Inositol pyrophosphates have been implicated in numerous biological processes. Inositol hexakisphosphate kinase-2 (IP6K2), which generates the inositol pyrophosphate, diphosphoinositol pentakisphosphate (IP7), influences apoptotic cell death. The tumor suppressor p53 responds to genotoxic stress by engaging a transcriptional program leading to cell-cycle arrest or apoptosis. We demonstrate that IP6K2 is required for p53-mediated apoptosis and modulates the outcome of the p53 response. Gene disruption of IP6K2 in colorectal cancer cells selectively impairs p53-mediated apoptosis, instead favoring cell-cycle arrest. IP6K2 acts by binding directly to p53 and decreasing expression of proarrest gene targets such as the cyclin-dependent kinase inhibitor p21.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2010
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2008
    In:  Proceedings of the National Academy of Sciences Vol. 105, No. 7 ( 2008-02-19), p. 2349-2353
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 105, No. 7 ( 2008-02-19), p. 2349-2353
    Abstract: Inositol pyrophosphates, also designated inositol diphosphates, possess high-energy β-phosphates that can pyrophosphorylate proteins and regulate various cellular processes. They are formed by a family of inositol hexakisphosphate kinases (IP6Ks). We have created mice with a targeted deletion of IP6K1 in which production of inositol pyrophosphates is markedly diminished. Defects in the mutants indicate important roles for IP6K1 and inositol pyrophosphates in several physiological functions. Male mutant mice are sterile with defects in spermiogenesis. Mutant mice are smaller than wild-type despite normal food intake. The mutants display markedly lower circulating insulin.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2008
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...