GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: ISPRS International Journal of Geo-Information, MDPI AG, Vol. 10, No. 8 ( 2021-07-23), p. 498-
    Abstract: In 2015, within the timespan of only a few months, more than a million people made their way from Turkey to Central Europe in the wake of the Syrian civil war. At the time, public authorities and relief organisations struggled with the admission, transfer, care, and accommodation of refugees due to the information gap about ongoing refugee movements. Therefore, we propose an approach utilising machine learning methods and publicly available data to provide more information about refugee movements. The approach combines methods to analyse the textual, temporal and spatial features of social media data and the number of arriving refugees of historical refugee movement statistics to provide relevant and up to date information about refugee movements and expected numbers. The results include spatial patterns and factual information about collective refugee movements extracted from social media data that match actual movement patterns. Furthermore, our approach enables us to forecast and simulate refugee movements to forecast an increase or decrease in the number of incoming refugees and to analyse potential future scenarios. We demonstrate that the approach proposed in this article benefits refugee management and vastly improves the status quo.
    Type of Medium: Online Resource
    ISSN: 2220-9964
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2655790-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    MDPI AG ; 2021
    In:  Energies Vol. 14, No. 21 ( 2021-11-08), p. 7443-
    In: Energies, MDPI AG, Vol. 14, No. 21 ( 2021-11-08), p. 7443-
    Abstract: Forecasting renewable energy sources is of critical importance to several practical applications in the energy field. However, due to the inherent volatile nature of these energy sources, doing so remains challenging. Numerous time-series methods have been explored in literature, which consider only one specific type of renewables (e.g., solar or wind), and are suited to small-scale (micro-level) deployments. In this paper, the different types of renewable energy sources are reflected, which are distributed at a national level (macro-level). To generate accurate predictions, a methodology is proposed, which consists of two main phases. In the first phase, the most relevant variables having impact on the generation of the renewables are identified using correlation analysis. The second phase consists of (1) estimating model parameters, (2) optimising and reducing the number of generated models, and (3) selecting the best model for the method under study. To this end, the three most-relevant time-series auto-regression based methods of SARIMAX, SARIMA, and ARIMAX are considered. After deriving the best model for each method, then a comparison is carried out between them by taking into account different months of the year. The evaluation results illustrate that our forecasts have mean absolute error rates between 6.76 and 11.57%, while considering both inter- and intra-day scenarios. The best models are implemented in an open-source REN4Kast software platform.
    Type of Medium: Online Resource
    ISSN: 1996-1073
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2437446-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...