GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Material
Language
  • 1
    In: British Journal of Surgery, Oxford University Press (OUP), Vol. 106, No. 2 ( 2019-01-08), p. e73-e80
    Abstract: The Clavien–Dindo classification is perhaps the most widely used approach for reporting postoperative complications in clinical trials. This system classifies complication severity by the treatment provided. However, it is unclear whether the Clavien–Dindo system can be used internationally in studies across differing healthcare systems in high- (HICs) and low- and middle-income countries (LMICs). Methods This was a secondary analysis of the International Surgical Outcomes Study (ISOS), a prospective observational cohort study of elective surgery in adults. Data collection occurred over a 7-day period. Severity of complications was graded using Clavien–Dindo and the simpler ISOS grading (mild, moderate or severe, based on guided investigator judgement). Severity grading was compared using the intraclass correlation coefficient (ICC). Data are presented as frequencies and ICC values (with 95 per cent c.i.). The analysis was stratified by income status of the country, comparing HICs with LMICs. Results A total of 44 814 patients were recruited from 474 hospitals in 27 countries (19 HICs and 8 LMICs). Some 7508 patients (16·8 per cent) experienced at least one postoperative complication, equivalent to 11 664 complications in total. Using the ISOS classification, 5504 of 11 664 complications (47·2 per cent) were graded as mild, 4244 (36·4 per cent) as moderate and 1916 (16·4 per cent) as severe. Using Clavien–Dindo, 6781 of 11 664 complications (58·1 per cent) were graded as I or II, 1740 (14·9 per cent) as III, 2408 (20·6 per cent) as IV and 735 (6·3 per cent) as V. Agreement between classification systems was poor overall (ICC 0·41, 95 per cent c.i. 0·20 to 0·55), and in LMICs (ICC 0·23, 0·05 to 0·38) and HICs (ICC 0·46, 0·25 to 0·59). Conclusion Caution is recommended when using a treatment approach to grade complications in global surgery studies, as this may introduce bias unintentionally.
    Type of Medium: Online Resource
    ISSN: 0007-1323 , 1365-2168
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2019
    detail.hit.zdb_id: 2006309-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2023
    In:  Aging Clinical and Experimental Research Vol. 35, No. 3 ( 2023-01-04), p. 639-647
    In: Aging Clinical and Experimental Research, Springer Science and Business Media LLC, Vol. 35, No. 3 ( 2023-01-04), p. 639-647
    Abstract: Elderly patients are susceptible to postoperative infections with increased mortality. Analyzing with a deep learning model, the perioperative factors that could predict and/or contribute to postoperative infections may improve the outcome in elderly. This was an observational cohort study with 2014 elderly patients who had elective surgery from 28 hospitals in China from April to June 2014. We aimed to develop and validate deep learning-based predictive models for postoperative infections in the elderly. 1510 patients were randomly assigned to be training dataset for establishing deep learning-based models, and 504 patients were used to validate the effectiveness of these models. The conventional model predicted postoperative infections was 0.728 (95% CI 0.688–0.768) with the sensitivity of 66.2% (95% CI 58.2–73.6) and specificity of 66.8% (95% CI 64.6–68.9). The deep learning model including risk factors relevant to baseline clinical characteristics predicted postoperative infections was 0.641 (95% CI 0.545–0.737), and sensitivity and specificity were 34.2% (95% CI 19.6–51.4) and 88.8% (95% CI 85.6–91.6), respectively. Including risk factors relevant to baseline variables and surgery, the deep learning model predicted postoperative infections was 0.763 (95% CI 0.681–0.844) with the sensitivity of 63.2% (95% CI 46–78.2) and specificity of 80.5% (95% CI 76.6–84). Our feasibility study indicated that a deep learning model including risk factors for the prediction of postoperative infections can be achieved in elderly. Further study is needed to assess whether this model can be used to guide clinical practice to improve surgical outcomes in elderly.
    Type of Medium: Online Resource
    ISSN: 1720-8319
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2119282-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: British Journal of Anaesthesia, Elsevier BV, Vol. 120, No. 1 ( 2018-01), p. 146-155
    Type of Medium: Online Resource
    ISSN: 0007-0912
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2018
    detail.hit.zdb_id: 2011968-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: The Lancet, Elsevier BV, Vol. 402, No. 10395 ( 2023-07), p. 27-40
    Type of Medium: Online Resource
    ISSN: 0140-6736
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2023
    detail.hit.zdb_id: 2067452-1
    detail.hit.zdb_id: 3306-6
    detail.hit.zdb_id: 1476593-7
    SSG: 5,21
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Permafrost and Periglacial Processes, Wiley, Vol. 29, No. 4 ( 2018-10), p. 257-270
    Abstract: To investigate and monitor permafrost in the Bayan Har Mountains (BHM), north‐eastern Qinghai–Tibet Plateau, southwest China, 19 boreholes ranging from 20 to 100 m in depth were drilled along an elevational transect (4,221–4,833 m a.s.l.) from July to September 2010. Measurements from these boreholes demonstrate that ground temperatures at the depth of zero annual amplitude ( T ZAA ) are generally higher than −2.0°C. The lapse rates of T ZAA are 4 and 6 °C km −1 , and the lower limits of permafrost with T ZAA   〈  −1°C are approximately 4,650 and 4,750 m a.s.l. on the northern (near Yeniugou) and southern (near Qingshui'he) slopes, respectively. T ZAA changes abruptly within short distances from −0.2 to +1.2°C near the northern lower limits of permafrost and from about +0.5 to +1.5°C near the southern lower limits of permafrost. Thawing and freezing on the ground surface at Qingshui'he (4,413 m a. s. l.) are 13.3 d earlier and 26 d later than that at Chalaping (4,724 m a. s. l.), respectively. The temperature gradient at Qingshui'he is clearly larger than that at Chalaping. The changes of permafrost T ZAA ranged from 0.03°C to 0.2°C from 2010 to 2017. A 3.5‐m‐thick permafrost near Qingshui'he was observed to disappear in summer 2013. There is no significant correlation between elevation and permafrost temperature changes in the study area, whereas the changes of very warm (close to 0°C) permafrost seem to be slow in the intermontane basins.
    Type of Medium: Online Resource
    ISSN: 1045-6740 , 1099-1530
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2018
    detail.hit.zdb_id: 1479993-5
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Land Degradation & Development, Wiley, Vol. 33, No. 8 ( 2022-05-15), p. 1219-1234
    Abstract: The Hola basin in the northern Da Xing'anling Mountains in Northeast China has been extensively developed for coal mining since the 1980s, resulting in a significantly degrading permafrost environment. However, the changing thermal state of permafrost under the boreal forest remains unclear. Based on ground temperature records from nine monitoring boreholes at three areas (disturbed, backfilled, and undisturbed areas) from 2015 to 2020, the thermal state of permafrost under the dual influences of climate change and human activities were evaluated. It is found that the temperatures at the depth of zero annual amplitude (T ZAA ) in the disturbed area increased by 0.2–0.5°C during the past 6 years, turning the cold permafrost (T ZAA  ≤ −1.0°C) into a warm one (−1 ≤ T ZAA  ≤ 0°C). Additionally, the permafrost table was lowered by 0.8–7.0 m. As a result, subaerial supra‐permafrost talik occurred. However, T ZAA in the undisturbed areas lowered by 0.03–0.11°C, possibly due to the lagged response of the local climate cooling during 2001–2010. In the meantime, T ZAA rose sharply in the disturbed areas, indicating more significant influences of intense human activities on permafrost in comparison with that of climate change. As the permafrost degrades, the boreal permafrost eco‐environment has changed dramatically, as revealed by the draining and drying up of the Yueya'hu Lake in the southern Hola basin. These results help reveal the physical mechanisms, evaluate the rates and amplitudes of environmental changes, and manage the boreal forest environment and resources in a sustainable manner.
    Type of Medium: Online Resource
    ISSN: 1085-3278 , 1099-145X
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2021787-0
    detail.hit.zdb_id: 1319202-4
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Land Degradation & Development, Wiley, Vol. 33, No. 16 ( 2022-10), p. 3133-3149
    Abstract: Boreal forest and wetland have important influences on the development and protection of the ecosystem‐dominated Xing'an permafrost. However, the responses of different ecosystems to climate change and the impacts on the underlying permafrost are still unclear. Here, based on the multi‐period land use/land cover (LULC) data and long‐time series of air temperature, combined with the ordinary least squares (OLS) and ordinary kriging (OK) methods, the effects of land use and cover change (LUCC) on the distribution of mean annual air temperature (MAAT) and permafrost in Northeast China were analyzed. From 1980s to 2010s, MAAT showed an upward trend (0.025°C per yr) and extents of permafrost showed a decreasing trend (−3668 km 2 yr −1 ) in Northeast China. Permafrost degradation mainly occurred in forested land and grassland, with areal reductions of 4.0106 × 10 4 and 3.8754 × 10 4  km 2 , respectively. The transformation of LULC aggravates the degradation of permafrost. The conversions of forested land and grassland to cultivated land and forested land to grassland resulted in the shrinkage of permafrost extent by 6233 km 2 from 1980s to 2010s . Our results confirm the significant impacts of LUCC on the Xing'an permafrost resulting in its degradation. Additionally, they can provide a scientific basis for ecological environment protection and restoration and sustainable development of boreal forest and wetland ecosystems in permafrost regions of Northeast China.
    Type of Medium: Online Resource
    ISSN: 1085-3278 , 1099-145X
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2021787-0
    detail.hit.zdb_id: 1319202-4
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Remote Sensing, MDPI AG, Vol. 15, No. 6 ( 2023-03-12), p. 1547-
    Abstract: Engineering corridors on the Qinghai–Tibet Plateau have substantially modified the regional ecosystem functions and environment, resulting in changes in the alpine ecosystem. In addition, the building and operation of these engineering corridors have led to rapid permafrost degradation, which in turn has impacted local vegetation along these corridors. This study investigated vegetation changes and their driving factors by the methods of coefficient of variation, correlation analysis, and GeoDetector in a 30 km wide buffer zone at each side along the National Highway G214 (G214) at the northern and southern flanks of the Bayan Har Mountains in part of the source area of the Yellow and Yangtze rivers on the southern Qinghai Plateau, West China. The following results were obtained: (1) The Normalized Difference Vegetation Index in Growing Season (NDVIgs) rose slightly in 2010–2019, with an average annual change rate of 0.006/a. Patterns of NDVIgs along the G214 exhibited “low at the northern flank and high at the southern flank of the Bayan Har Mountains”. (2) Spatially, average NDVIgs increased from the first buffer zone at the distance of 0–10 km from the highway centerline to the second buffer zone at 20–30 km perpendicularly away from the G214. Furthermore, the first buffer zone had the lowest coefficient of variation, possibly due to a low vegetation recovery as a result of the greatest influence of the G214 on NDVIgs at 0–10 km. (3) Furthermore, annual precipitation (AP) was the dominant factor for significantly (p 〈 0.01) and positively influencing the variations in NDVIgs (R = 0.75, p 〈 0.01). Additionally, NDVIgs was more strongly influenced by the two combined factors than any single one, with the highest q-value (0.74) for the interactive influences of AP and annual average air temperature (AAAT) and followed by that of the AP and mean annual ground temperature (MAGT) at the depth of zero annual amplitude (15 m). Evidently, the construction and operation of the G214 have directly and indirectly affected vegetation through changing environmental variables, with significant impacts on NDVIgs extended at least 20 km outwards from the highway. This study helps better understand the environmental impacts along the engineering corridors in elevational permafrost regions at mid and low latitudes and their management.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Forests, MDPI AG, Vol. 13, No. 7 ( 2022-07-12), p. 1093-
    Abstract: Pipeline corridors have been rapidly increasing in length and density because of the ever growing demand for crude oil and natural gas resources in hydrocarbon-rich permafrost regions. Pipeline engineering activities have significant implications for the permafrost environment in cold regions. Along these pipeline corridors, the shrubification in the right-of-way (ROW) has been extensively observed during vegetation recovery. However, the hydrothermal mechanisms of this ROW shrubification have seldom been studied and thus remain poorly understood. This paper reviews more than 112 articles mainly published from 2000 to 2022 and focuses on the hydrothermal mechanisms of shrubification associated with environmental changes induced by the rapidly degrading permafrost from pipeline construction and around the operating pipelines under a warming climate. First, the shrubification from pipeline construction and operation and the ensuing vegetation clearance are featured. Then, key permafrost-related ROW shrubification mechanisms (e.g., from the perspectives of warmer soil, soil moisture, soil type, soil nutrients, topography and landscapes, and snow cover) are discussed. Other key influencing factors on these hydrothermal and other mechanisms are hierarchically documented as well. In the end, future research priorities are identified and proposed. We call for prioritizing more systematic and in-depth investigations and surveys, laboratory testing, long-term field monitoring, and numerical modeling studies of the ROW shrubification along oil and gas pipelines in permafrost regions, such as in boreal and arctic zones, as well as in alpine and high-plateau regions. This review can improve our understanding of shrubification mechanisms under pipeline disturbances and climate changes and help to better manage the ecological environment along pipeline corridors in permafrost regions.
    Type of Medium: Online Resource
    ISSN: 1999-4907
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2527081-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Copernicus GmbH ; 2022
    In:  Earth System Science Data Vol. 14, No. 9 ( 2022-09-01), p. 3947-3959
    In: Earth System Science Data, Copernicus GmbH, Vol. 14, No. 9 ( 2022-09-01), p. 3947-3959
    Abstract: Abstract. Under a pronounced climate warming, permafrost has been degrading in most areas globally, but it is still unclear in the northwestern part of the Da Xing'anling Mountains, Northeast China. According to a 10-year observation of permafrost and active-layer temperatures, the multi-year average of mean annual ground temperatures at 20 m was −2.83, −0.94, −0.80, −0.70, −0.60, and −0.49 ∘C, respectively, at boreholes Gen'he4 (GH4), Mangui3 (MG3), Mangui1 (MG1), Mangui2 (MG2), Gen'he5 (GH5), and Yituli'he2 (YTLH2), with the depths of the permafrost table varying from 1.1 to 7.0 m. Ground cooling at shallow depths has been detected, resulting in declining thaw depths in Yituli'he during 2009–2020, possibly due to relatively stable mean positive air temperature and declining snow cover and a dwindling local population. In most study areas (e.g., Mangui and Gen'he), permafrost warming is particularly pronounced at larger depths (even at 80 m). These results can provide important information for regional development and engineering design and maintenance and also provide a long-term ground temperature dataset for the validation of models relevant to the thermal dynamics of permafrost in the Da Xing'anling Mountains. All of the datasets are published through the National Tibetan Plateau Data Center (TPDC), and the link is https://doi.org/10.11888/Geocry.tpdc.271752 (Chang, 2021).
    Type of Medium: Online Resource
    ISSN: 1866-3516
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2475469-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...