GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: European Journal of Nutrition & Food Safety, Sciencedomain International, ( 2021-03-03), p. 112-114
    Abstract: Genetically modified carnation (Dianthus caryophyllus L.) line 123.8.12 with product name Moonaqua™, expresses three introduced traits. The dfr gene from Petunia x hybrida and the f3′5′h (Hf1) gene from Viola sp., coding for dihydroflavonol 4-reductase (DFR) and flavonoid 3′,5′-hydroxylase (F3′5′H), respectively, lead to the biosynthesis of anthocyanin pigments, which confer the desired mauve colour to the flowers. A mutated als gene (SuRB) from Nicotiana tabacum has also been inserted, coding for an acetolactate synthase (ALS) variant protein and thereby conferring tolerance to the active, ALS-inhibiting, herbicidal substances chlorimuron, thifensulfuron and sulfonylureas, used to facilitate the selection of GM shoots during genetic transformation. Bioinformatics analyses of the inserted DNA and flanking sequences in carnation 123.8.12 have not indicated a potential production of putative harmful proteins or polypeptides caused by the genetic modification. Genomic stability of the functional insert and consistent expression of the dfr and f3′5′h (Hf1) genes, have been shown over several generations of carnation 123.8.12. Data reported from several field trials show that carnation 123.8.12 petals contain higher levels of the anthocyanins delphinidin and cyanidin compared to the non-GM (conventional) carnation counterpart FE123. Other morphological traits were reported and along with differing petal colour, carnation Moonaqua 123.8.12 differed significantly in one trait compared to conventional carnation counterpart FE123. An acute toxicity study in mice and an in vitro mutagenicity study employing aqueous extracts from leaves or petals showed no adverse effects. DFR, F3’5’H and ALS proteins do not show sequence resemblance to known toxins or IgE-dependent allergens, nor have they been reported to cause IgE-mediated allergic reactions. The anthocyanins delphinidin and cyanidin are present in numerous foods and are also approved food additives. Carnations are cultivated in Norway, but since 1) the intended uses includes import of cut flowers for ornamental use only, 2) the spread and viability of pollen from the cut flowers is low, 3) seed formation in cut flowers is unlikely to occur, and 4) spread of inserted genes to target or non-target organisms is either unlikely to occur or is not of biological relevance, the VKM GMO Panel does not consider that carnation 123.8.12 represents an environmental risk in Norway.    Considering that carnation Moonaqua 123.8.12 is not intended for cultivation or use as food or feed, the VKM GMO Panel considers that comparative analysis of the newly synthesised anthocyanin pigments delphinidin, cyanidin and petunidin in its petals is sufficient for the risk assessment. The reported morphological differences between Moonaqua 123.8.12 and the conventional carnation counterpart FE123 do not raise safety concerns. It is unlikely that the DFR, F3’5’H or ALS proteins, or the delphinidin or cyanidin pigments, will introduce a toxic or allergenic potential in Moonaqua 123.8.12.  Based on current knowledge and information supplied by the applicant, and considering the intended use, which excludes cultivation and use as food and feed, the VKM GMO Panel concludes that Moonaqua 123.8.12 is as safe as its conventional counterpart FE123.   Based on the current knowledge and considering its import, distribution and intended use as cut ornamental flowers, the VKM GMO Panel concludes that it is unlikely that carnation Moonaqua 123.8.12 will have any adverse effects on the biotic or abiotic environment in Norway.
    Type of Medium: Online Resource
    ISSN: 2347-5641
    Language: Unknown
    Publisher: Sciencedomain International
    Publication Date: 2021
    detail.hit.zdb_id: 2810065-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: European Journal of Nutrition & Food Safety, Sciencedomain International, ( 2021-02-24), p. 40-42
    Abstract: Genetically modified carnation (Dianthus caryophyllus L.) line 123.2.38 with product name Moonlite™, expresses three introduced traits. The dfr and f3′5′h (Hf1) genes from Petunia x hybrida coding for dihydroflavonol 4-reductase (DFR) and flavonoid 3′,5′-hydroxylase (F3′5′H), respectively, lead to the biosynthesis of anthocyanin pigments, which confer the desired violet colour to the flowers. A mutated als gene from Nicotiana tabacum has also been inserted, coding for an acetolactate synthase (ALS) variant protein and thereby conferring tolerance to the active, ALS-inhibiting, herbicidal substances chlorimuron, thifensulfuron and sulfonylureas, used to facilitate the selection of GM shoots during genetic transformation. Bioinformatics analyses of the inserted DNA and flanking sequences in carnation 123.2.38 have not indicated a potential production of putative harmful proteins or polypeptides caused by the genetic modification. Genomic stability of the functional insert and consistent expression of the dfr and f3′5′h (Hf1) genes, have been shown over several generations of carnation 123.2.38. Data reported from several field trials show that carnation 123.2.38 petals contain higher levels of the anthocyanins delphinidin and cyanidin compared to the non-GM (conventional) carnation counterpart 123. Other morphological traits were reported and along with differing petal colour, carnation Moonlite 123.2.38 differed significantly in one trait compared to conventional carnation counterpart 123. An acute toxicity study in mice and two in vitro studies, both employing aqueous extracts from leaves or petals, showed no adverse effects. DFR, F3’5’H and ALS proteins do not show sequence resemblance to known toxins or IgE-dependent allergens, nor have they been reported to cause IgE-mediated allergic reactions. The anthocyanins delphinidin and cyanidin are present in numerous foods and are also approved food additives. Carnations are cultivated in Norway, but since 1) the intended uses includes import of cut flowers for ornamental use only, 2) the spread and viability of pollen from the cut flowers is low, 3) seed formation in cut flowers is unlikely to occur, and 4) spread of inserted genes to target or non-target organisms is either unlikely to occur or is not of biological relevance, the VKM GMO Panel does not consider that carnation 123.2.38 represents an environmental risk in Norway.    Considering that carnation Moonlite 123.2.38 is not intended for cultivation or use as food or feed, the VKM GMO Panel considers that comparative analysis of the newly synthesised anthocyanin pigments delphinidin, cyanidin and petunidin in its petals is sufficient for the risk assessment. The reported morphological differences between Moonlite 123.2.38 and its conventional carnation counterpart 123 do not raise safety concerns. It is unlikely that the DFR, F3’5’H or ALS proteins, or the delphinidin or cyanidin pigments, will introduce a toxic or allergenic potential in Moonlite 123.2.38.   Based on current knowledge and information supplied by the applicant, and considering the intended uses, which exclude cultivation and use as food and feed, the VKM GMO Panel concludes that Moonlite 123.2.38 is as safe as its conventional counterpart 123.    Based on the current knowledge and considering its import, distribution and intended use as cut ornamental flowers, the VKM GMO Panel concludes that it is unlikely that carnation Moonlite 123.2.38 will have any adverse effects on the biotic or abiotic environment in Norway.
    Type of Medium: Online Resource
    ISSN: 2347-5641
    Language: Unknown
    Publisher: Sciencedomain International
    Publication Date: 2021
    detail.hit.zdb_id: 2810065-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: European Journal of Nutrition & Food Safety, Sciencedomain International, ( 2021-03-03), p. 101-103
    Abstract: Genetically modified carnation (Dianthus caryophyllus L.) line IFD-26407-2 with product name Moonvelvet™, expresses three introduced traits. The cytb5 gene and the f3′5′h (Hf1) gene from Petunia x hybrida, coding for cytochrome b5 (CYTB5) and flavonoid 3′,5′hydroxylase (F3′5′H), respectively, lead to the biosynthesis of anthocyanin pigments, which confer the desired violet/blue colour to the flowers. A mutated als gene (SuRB) from Nicotiana tabacum has also been inserted, coding for an acetolactate synthase (ALS) variant protein and thereby conferring tolerance to the active, ALS-inhibiting, herbicidal substances chlorimuron, thifensulfuron and sulfonylureas, used to facilitate the selection of GM shoots during genetic transformation. Bioinformatic analyses of the inserted DNA and flanking sequences in carnation Moonvelvet IFD-26407-2 have not indicated a potential production of putative harmful proteins or polypeptides caused by the genetic modification. Genomic stability of the functional insert and consistent expression of the cytb5 and f3′5′h (Hf1) genes, have been shown over several generations of carnation Moonvelvet IFD-26407-2. Data reported from several field trials show that carnation Moonvelvet IFD-26407-2 petals contain higher levels of the anthocyanins delphinidin and cyanidin, and lower levels of pelargonidin compared to the non-GM (conventional) carnation counterpart Cerise Westpearl (CW). Other morphological traits were reported and along with differing petal colour, carnation Moonvelvet IFD-26407-2 differed significantly in 10 traits compared to conventional carnation counterpart CW. Aqueous extracts from leaves or petals showed no mutagenic activity in vitro. ALS, CYTB5, and F3’5’H proteins do not show sequence resemblance to known toxins or IgE-dependent allergens, nor have they been reported to be toxic to animals or cause IgE-mediated allergic reactions. The anthocyanins delphinidin and cyanidin are present in numerous foods and are also approved food additives. Carnations are cultivated in Norway, but since 1) the intended uses includes import of cut flowers for ornamental use only, 2) the spread and viability of pollen from the cut flowers is low, 3) seed formation in cut flowers is unlikely to occur, and 4) spread of inserted genes to target or non-target organisms is either unlikely to occur or is not of biological relevance, the VKM GMO Panel does not consider that carnation Moonvelvet IFD-26407-2 represents an environmental risk in Norway.    Considering that carnation Moonvelvet IFD-26407-2 is not intended for cultivation or use as food or feed, the VKM GMO Panel considers that comparative analysis of the newly synthesised anthocyanin pigments delphinidin, cyanidin and pelargonidin in its petals is sufficient for the risk assessment. The reported morphological differences between Moonvelvet IFD-26407-2 and its conventional carnation counterpart Cerise Westpearl (CW) do not raise safety concerns. It is unlikely that either the CYTB5, F3’5’H or ALS proteins, or the delphinidin or cyanidin pigments, will introduce a toxic or allergenic potential in Moonvelvet IFD-26407-2.    Based on current knowledge and information supplied by the applicant, and considering the intended uses, which exclude cultivation and use as food and feed, the VKM GMO Panel concludes that Moonvelvet IFD-26407-2 is as safe as its conventional counterpart CW.    Based on the current knowledge and considering its import, distribution and intended use as cut ornamental flowers, the VKM GMO Panel concludes that it is unlikely that carnation Moonvelvet IFD-26407-2 will have any adverse effects on the biotic or abiotic environment in Norway.
    Type of Medium: Online Resource
    ISSN: 2347-5641
    Language: Unknown
    Publisher: Sciencedomain International
    Publication Date: 2021
    detail.hit.zdb_id: 2810065-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: European Journal of Nutrition & Food Safety, Sciencedomain International, ( 2021-03-06), p. 117-119
    Abstract: Genetically modified carnation (Dianthus caryophyllus L.) line IFD-25958-3 with product name Moonberry™, expresses three introduced traits. The dfr gene from Petunia x hybrida and the f3′5′h gene from Viola hortensis, coding for dihydroflavonol 4-reductase (DFR) and flavonoid 3′,5′-hydroxylase (F3′5′H), respectively, lead to the biosynthesis of anthocyanin pigments, which confer the desired violet/blue colour to the flowers. A mutated als gene (SuRB) from Nicotiana tabacum has also been inserted, coding for an acetolactate synthase (ALS) variant protein and thereby conferring tolerance to the active, ALS-inhibiting, herbicidal substances chlorimuron, thifensulfuron and sulfonylureas, used to facilitate the selection of GM shoots during genetic transformation. Of note, carnation Moonberry IFD25958-3 contained a hairpin RNA interference (RNAi) gene, which down-regulates endogenous dfr. Bioinformatics analyses of the inserted DNA and flanking sequences in carnation Moonberry IFD-25958-3 have not indicated a potential production of putative harmful proteins or polypeptides caused by the genetic modification. Genomic stability of the functional insert and consistent expression of the dfr and f3′5′h genes, have been shown over several generations of carnation Moonberry IFD-25958-3. Data reported from several field trials show that carnation Moonberry IFD-25958-3 petals contain higher levels of the anthocyanins delphinidin and cyanidin, and lower levels of pelargonidin compared to the non-GM (conventional) carnation counterpart Cerise Westpearl (CW). Other morphological traits were reported and along with differing petal colour, carnation Moonberry IFD-25958-3 differed significantly in nine traits compared to conventional carnation counterpart CW. Aqueous extracts from leaves or petals showed no mutagenic activity in vitro. ALS, DFR, and F3’5’H proteins do not show sequence resemblance to known toxins or IgE-dependent allergens, nor have they been reported to be toxic to animals or cause IgE-mediated allergic reactions. The anthocyanins delphinidin and cyanidin are present in numerous foods and are also approved food additives. Carnations are cultivated in Norway, but since 1) the intended uses includes import of cut flowers for ornamental use only, 2) the spread and viability of pollen from the cut flowers is low, 3) seed formation in cut flowers is unlikely to occur, and 4) spread of inserted genes to target or non-target organisms is either unlikely to occur or is not of biological relevance, the VKM GMO Panel does not consider that carnation Moonberry IFD-25958-3 represents an environmental risk in Norway.    Considering that carnation Moonberry IFD-25958-3 is not intended for cultivation or use as food or feed, the VKM GMO Panel considers that comparative analysis of the newly synthesised anthocyanin pigments delphinidin, cyanidin and pelargonidin in its petals is sufficient for the risk assessment. The reported morphological differences between Moonberry IFD-25958-3 and its conventional carnation counterpart Cerise Westpearl (CW) do not raise safety concerns. It is unlikely that the DFR, F3’5’H or ALS proteins, or the delphinidin or cyanidin pigments, will introduce a toxic or allergenic potential in Moonberry IFD-25958-3.    Based on current knowledge and information supplied by the applicant, and considering the intended use, which excludes cultivation and use as food and feed, the VKM GMO Panel concludes that Moonberry IFD-25958-3 is as safe as its conventional counterpart CW.    Based on the current knowledge and considering its import, distribution and intended use as cut ornamental flowers, the VKM GMO Panel concludes that it is unlikely that carnation Moonberry IFD-25958-3 will have any adverse effects on the biotic or abiotic environment in Norway.
    Type of Medium: Online Resource
    ISSN: 2347-5641
    Language: Unknown
    Publisher: Sciencedomain International
    Publication Date: 2021
    detail.hit.zdb_id: 2810065-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Wiley ; 2011
    In:  Journal of Cellular Physiology Vol. 226, No. 9 ( 2011-09), p. 2257-2266
    In: Journal of Cellular Physiology, Wiley, Vol. 226, No. 9 ( 2011-09), p. 2257-2266
    Abstract: The six microRNAs (miRNA) encoded by the miR‐17–92 cluster, also named oncomir‐1, have been associated with carcinogenesis and typically exhibit‐increased expression in tumors. Despite the well‐established role for the miR‐17–92 cluster in an oncogenic network, the physiological function of these miRNAs in normal tissues remains unresolved. In order to investigate whether there are similar patterns of miR‐17–92 expression during embryogenesis and carcinogenesis, we have preformed a systematic study of the expression in cultured carcinoma cells, cultured primary human keratinocytes (KC), and during development of some murine tissues. Both levels of expression of the primary transcript (pri‐miRNA) and levels of expression of the individual members of the cluster were monitored. Irrespectively of tissue examined we found that the level of expression decreased markedly during development. With cultured primary human KCs their levels of expression of some of these microRNAs decreased as the number of cell passages increased. Their levels of expression in cultured carcinoma cells, in contrasts, increased, or remained unchanged, with increasing number of cell passages. The results suggest these microRNAs are involved in the regulation of foetal development and that they may promote proliferation and inhibit differentiation during embryogenesis and carcinogenesis. Additionally, the six microRNAs exhibit variable tissue expression, suggesting selective processing of these microRNAs. J. Cell. Physiol. 226: 2257–2266, 2011. © 2010 Wiley‐Liss, Inc.
    Type of Medium: Online Resource
    ISSN: 0021-9541 , 1097-4652
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2011
    detail.hit.zdb_id: 1478143-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: European Journal of Nutrition & Food Safety, Sciencedomain International, ( 2020-01-24), p. 242-245
    Abstract: In preparation for a legal implementation of EU-regulation 1829/2003, the Norwegian Scientific Committee for Food Safety (VKM) has been requested by the Norwegian Environment Agency (former Norwegian Directorate for Nature Management) and the Norwegian Food Safety Authority (NFSA) to conduct final food/feed and environmental risk assessments for all genetically modified organisms (GMOs) and products containing or consisting of GMOs that are authorized in the European Union under Directive 2001/18/EC or Regulation 1829/2003/EC. The request covers scope(s) relevant to the Gene Technology Act. The request does not cover GMOs that VKM already has conducted its final risk assessments on. However, the Agency and NFSA requests VKM to consider whether updates or other changes to earlier submitted assessments are necessary.  The herbicide-tolerant and insect-resistant genetically modified maize 59122 from Pioneer HiBred/Mycogen Seeds (Unique Identifier DAS-59122-7) is approved under EU Regulation 1829/2003/EC for food and feed uses, import and processing since 24 October 2007 (Application EFSA/GMO/NL/2005/12, Commission Decision 2007/702/EC). An application for granting   consent to all uses of 59122 maize, including cultivation, was submitted by Pioneer in               accordance with articles 5 and 17 of the Regulation (EC) No. 1829/2003 21 October, 2005 (EFSA/GMO/NL/2005/23).   VKM participated in the 90 days public consultation of the application for placing on the market of maize 59122 for food and feed uses, import and processing (EFSA/GMO/NL/2005/12) in 2005, and submitted a preliminary opinion in December 2005 (VKM 2005a). Maize 59122 has also been assessed as food and feed by the VKM GMO Panel, commissioned by the Norwegian Environment Agency and the Norwegian Food Safety Authority in connection with the national finalisation of the application in 2008 (VKM 2008a). Maize 59122 has also been evaluated by the VKM GMO Panel as a component of several stacked GM maize events under Regulation (EC) 1829/2003 (VKM 2007a,b,c, VKM 2008b, VKM 2009, VKM 2012a,b, VKM 2013a,b,c,d). Due to the publication of new scientific literature and updated guidelines for risk assessment of genetically modified plants, the VKM GMO Panel has decided to deliver an updated food/feed and environmental risk assessment of event 59122.  The updated  food/feed and environmental risk assessment of the maize 59122 is based on information provided by the applicant in the applications EFSA/GMO/NL/2005/12 and EFSA/GMO/NL/2005/23 and scientific comments from EFSA and other member states made available on the EFSA website GMO Extranet. The risk assessment also considered other peer-reviewed scientific literature as relevant.    The VKM GMO Panel has evaluated 59122 with reference to its intended uses in the European Economic Area (EEA), and according to the principles described in the Norwegian Food Act, the Norwegian Gene Technology Act and regulations relating to impact assessment pursuant to the Gene Technology Act, Directive 2001/18/EC on the deliberate release into the environment of genetically modified organisms, and Regulation (EC) No 1829/2003 on genetically modified food and feed. The Norwegian Scientific Committee for Food Safety has also decided to take account of the appropriate principles described in the EFSA guidelines for the risk assessment of GM plants and derived food and feed (EFSA 2011a), the environmental risk assessment of GM plants (EFSA 2010a), selection of comparators for the risk assessment of GM plants (EFSA 2011b) and for the post-market environmental monitoring of GM plants (EFSA 2011c).   The scientific risk assessment of maize 59122 include molecular characterisation of the inserted DNA and expression of novel proteins, comparative assessment of agronomic and phenotypic characteristics, nutritional assessments, toxicology and allergenicity, unintended effects on plant fitness, potential for gene transfer, interactions between the GM plant, target and non-target organisms, and effects on biogeochemical processes.   It is emphasised that the VKM mandate does not include assessments of contribution to sustainable development, societal utility and ethical considerations, according to the Norwegian Gene Technology Act and Regulations relating to impact assessment pursuant to the Gene Technology Act. These considerations are therefore not part of the risk assessment provided by the VKM Panel on Genetically Modified Organisms.   Genetically modified maize 59122 expresses the cry34Ab1 and cry35Ab1 genes from Bacillus thuringiensis, conferring resistance to certain coleopteran target pests belonging to the genus Diabrotica, such as the larvae of western corn rootworm (D. virgifera virgifera), northern corn rootworm (D. barberi) and the southern corn rootworm (D. undecimpunctata howardi). None of the target pests for maize 59122 are present in the Norwegian agriculture. Maize 59122 also expresses the phosphinothricin-N-acetyltransferase (pat) gene, from the soil bacterium Streptomyces viridochromogenes. The encoded PAT protein confers tolerance to the herbicidal active substance glufosinate-ammonium. The PAT protein produced by maize 59122 has been used as a selectable marker to facilitate the selection process of transformed plant cells and is not intended for weed management purposes.  Molecular Characterization:  Appropriate analyses of the transgenic DNA insert, its integration site, number of inserts and flanking sequences in the maize genome, have been performed. The results show that only one copy of the insert is present in maize 59122. Homology searches with databases of known toxins and allergens have not indicated any potential production of harmful proteins or polypeptides caused by the genetic modification in maize 59122. Southern blot analyses and segregation studies show that the introduced genes cry34Ab1, cry35Ab1 and pat are stably inherited and expressed over several generations along with the phenotypic characteristics of maize 59122. The VKM GMO Panel considers the molecular characterisation of maize 59122 satisfactory.  Comparative assessment Comparative analyses of maize 59122 to its non-GM conventional counterpart have been performed during multiple field trials in representative areas for maize cultivation in Chile (2002/2003), North America (2003, 2004) and Europe (2003, 2004). With the exception of small intermittent variations, no biologically significant differences were found between maize 59122 and the conventional non-GM control. Based on the assessment of available data, the VKM GMO Panel concludes that maize 59122 is compositionally, agronomical and phenotypically equivalent to its conventional counterpart, except for the introduced characteristics.   Food and Feed Risk Assessment:  A 90-day subchronic feeding study in rats, as well as whole food feeding studies on broilers, laying hens, lactating dairy cows, feedlot steers, and growing-finishing pigs, have not indicated any adverse effects of maize 59122, and shows that maize 59122 is nutritionally equivalent to conventional maize. The PAT, Cry34Ab1 and Cry35Ab1 proteins do not show sequence resemblance to other known toxins or IgE allergens, nor have they been reported to cause IgE-mediated allergic reactions. Some studies have however indicated a potential role of Cry-proteins as adjuvants in allergic reactions.  Based on current knowledge, the VKM GMO Panel concludes that maize 59122 is nutritionally equivalent to conventional maize varieties. It is unlikely that the PAT, Cry34Ab1 and Cry35Ab1 proteins will introduce a toxic or allergenic potential in food or feed based on maize 59122 compared to conventional maize.  Environmental Risk Assessment:  Considering the intended uses of maize 59122, excluding cultivation, the environmental risk assessment is concerned with accidental release into the environment of viable grains during transportation and processing, and indirect exposure, mainly through manure and faeces from animals fed grains from maize 59122.   Maize 59122 has no altered survival, multiplication or dissemination characteristics, and there are no indications of an increased likelihood of spread and establishment of feral maize plants in the case of accidental release into the environment of seeds from maize 59122. Maize is the only representative of the genus Zea in Europe, and there are no cross-compatible wild or weedy relatives outside cultivation. The risk of gene flow from occasional feral GM maize plants to conventional maize varieties is negligible. Considering the intended use as food and feed, interactions with the biotic and abiotic environment are not considered to be an issue.  Overall Conclusion:  Based on current knowledge, the VKM GMO Panel concludes that maize 59122 is nutritionally equivalent to conventional maize varieties. It is unlikely that the PAT, Cry34Ab1 and Cry35Ab1 proteins will introduce a toxic or allergenic potential in food or feed based on maize 59122 compared to conventional maize. The VKM GMO Panel likewise concludes that maize 59122, based on current knowledge, is comparable to conventional maize varieties concerning environmental risk in Norway with the intended usage.
    Type of Medium: Online Resource
    ISSN: 2347-5641
    Language: Unknown
    Publisher: Sciencedomain International
    Publication Date: 2020
    detail.hit.zdb_id: 2810065-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: European Journal of Nutrition & Food Safety, Sciencedomain International, ( 2020-01-24), p. 229-232
    Abstract: In preparation for a legal implementation of EU-regulation 1829/2003, the Norwegian Environment Agency has requested the Norwegian Food Safety Authority to give final opinions on all genetically modified organisms (GMOs) and products containing or consisting of GMOs that are authorized in the European Union under Directive 2001/18/EC or Regulation 1829/2003/EC within the Authority’s sectorial responsibility. The Norwegian Food Safety Authority has therefore, by letter dated 13 February 2013 (ref. 2012/150202), requested the Norwegian Scientific Committee for Food Safety (VKM) to carry out scientific risk assessments of 39 GMOs and products containing or consisting of GMOs that are authorized in the European Union. The request covers scope(s) relevant to the Gene Technology Act. The request does not cover GMOs that VKM already has conducted its final risk assessments on. However, the Agency requests VKM to consider whether updates or other changes to earlier submitted assessments are necessary. The insect-resistant genetically modified maize MON 89034 (Unique Identifier MON-89Ø34-3) from Monsanto Company is approved under Regulation (EC) No 1829/2003 for food and feed uses, import and processing since 30 October 2009 (Application EFSA/GMO/NL/2007/37, Commission Decision 2009/813/EC).   Genetically modified maize MON 89034 has previously been risk assessed by the VKM Panel on Genetically Modified Organisms (GMO), commissioned by the Norwegian Food Safety Authority and the Norwegian Environmental Agency related to the EFSAs public hearing of the application EFSA/GMO/NL/2007/37 in 2007 (VKM 2008a). VKM has also been requested to issue a preliminary scientific opinion on the safety of the genetically modified maize MON 89034 for cultivation, and submit relevant scientific comments or questions to EFSA on the application EFSA/GMO/BE/2011/90 (VKM 2012a). At the request from the Norwegian Environment Agency the VKM GMO Panel also submitted a final environmental risk assessment of MON 89034 for food and feed uses in 2013 (VKM 2013). Finally, maize MON 89034 has been evaluated by the VKM GMO Panel as a component of several stacked GM maize events (VKM 2008b, 2009a,b, 2010a,b).   The food/feed and environmental risk assessment of maize MON 89034 is based on information provided by the applicant in the applications EFSA/GMO/NL/2007/37 and EFSA/GMO/BE/2011/90, and scientific comments from EFSA and other member states made available on the EFSA website GMO Extranet. The risk assessment also considered other peer-reviewed scientific literature as relevant.    The VKM GMO Panel has evaluated MON 89034 with reference to its intended uses in the European Economic Area (EEA) and according to the principles described in the Norwegian Food Act, the Norwegian Gene Technology Act and regulations relating to impact assessment pursuant to the Gene Technology Act, Directive 2001/18/EC on the deliberate release into the environment of genetically modified organisms, and Regulation (EC) No 1829/2003 on genetically modified food and feed. The Norwegian Scientific Committee for Food Safety has also decided to take account of the appropriate principles described in the EFSA guidelines for the risk assessment of GM plants and derived food and feed (EFSA 2011a), the environmental risk assessment of GM plants (EFSA 2010), selection of comparators for the risk assessment of GM plants (EFSA 2011b) and for the post-market environmental monitoring of GM plants (EFSA 2011c).   The scientific risk assessment of maize MON 89034 include molecular characterisation of the inserted DNA and expression of novel proteins, comparative assessment of agronomic and phenotypic characteristics, nutritional assessments, toxicology and allergenicity, unintended effects on plant fitness, potential for gene transfer, interactions between the GM plant and target and non-target organisms and effects on biogeochemical processes.  It is emphasized that the VKM mandate does not include assessments of contribution to sustainable development, societal utility and ethical considerations, according to the Norwegian Gene Technology Act and Regulations relating to impact assessment pursuant to the Gene Technology Act. These considerations are therefore not part of the risk assessment provided by the VKM Panel on Genetically Modified Organisms.   The genetically modified maize MON 89034 was developed to provide protection against certain lepidopteran target pest, including European corn borer (Ostrinia nubilalis) and Mediterranean corn borer (Sesamia nonagrioides). Protection is achieved through expression in the plant of two insecticidal Cry proteins, Cry1A.105 and Cry2Ab2, derived from Bacillus thuringiensis, a common soil bacterium. Cry1A.105, encoded by the cry1A.105 gene, is a chimeric protein made up of different functional domains derived from three wild-type Cry proteins from B. thuringiensis subspecies kurstaki and aizawai. The Cry2Ab2 protein is encoded by the cry2Ab2 gene derived from B. thuringiensis subspecies kurstaki.   Molecular characterization:  Appropriate analyses of the transgenic DNA insert, its integration site, number of inserts and flanking sequences in the maize genome, have been performed. The results show that only one copy of the insert is present in maize MON 89034. Homology searches with databases of known toxins and allergens have not indicated any potential production of harmful proteins or polypeptides caused by the genetic modification in maize MON 89034. Southern blot analyses and segregation studies show that the introduced genes cry1A.105 and cry2Ab2 are stably inherited and expressed over several generations along with the phenotypic characteristics of maize MON 89034. The VKM GMO Panel concludes that the molecular characterisation of maize MON 89034 does not indicate a safety concern.  Comparative assessment:  Comparative analyses of maize MON 89034 to its non-GM conventional counterpart have been performed during multiple field trials in representative areas for maize cultivation in USA, Argentina and Europe (2004, 2005 and 2007). With the exception of small intermittent variations, no biologically significant differences were found between maize MON 89034 and the conventional non-GM control. Based on the assessment of available data, the VKM GMO Panel concludes that maize MON 89034 is compositionally, agronomical and phenotypically equivalent to its conventional counterpart, except for the introduced characteristics.  Food and feed risk assessment:  A 90-day subchronic feeding study on rats, as well as whole food feeding studies on broilers and feedlot steers have not indicated any adverse effects of maize MON 89034 and shows that maize MON 89034 is nutritionally equivalent to conventional maize. The Cry1A.105 and Cry2Ab2 proteins do not show sequence resemblance to other known toxins or IgE allergens, nor have they been reported to cause IgE-mediated allergic reactions. Some studies have however indicated a potential role of Cry-proteins as adjuvants in allergic reactions.  Based on current knowledge, the VKM GMO Panel concludes that maize MON 89034 is nutritionally equivalent to conventional maize varieties. It is unlikely that the Cry1A.105 or Cry2Ab2 proteins will introduce a toxic or allergenic potential in food or feed based on maize MON 89034 compared to conventional maize.  Environmental risk assessment:  Considering the intended uses of maize MON 89034, excluding cultivation, the environmental risk assessment is concerned with accidental release into the environment of viable grains during transportation and processing, and indirect exposure, mainly through manure and faeces from animals fed grains from maize MON 89034.   Maize MON 89034 has no altered survival, multiplication or dissemination characteristics, and there are no indications of an increased likelihood of spread and establishment of feral maize plants in the case of accidental release into the environment of seeds from maize MON 89034. Maize is the only representative of the genus Zea in Europe and there are no cross-compatible wild or weedy relatives outside cultivation. The VKM GMO Panel considers the risk of gene flow from occasional feral GM maize plants to conventional maize varieties to be negligible in Norway. Considering the intended use as food and feed, interactions with the biotic and abiotic environment are not considered by the GMO Panel to be an issue.  Overall conclusion:  Based on current knowledge, the VKM GMO Panel concludes that maize MON 89034 is nutritionally equivalent to conventional maize varieties. It is unlikely that the Cry1A.105 and Cry2Ab2 proteins will introduce a toxic or allergenic potential in food or feed derived from maize MON 89034 compared to conventional maize.   The VKM GMO Panel likewise concludes that maize MON 89034, based on current knowledge, is comparable to conventional maize varieties concerning environmental risk in Norway with the intended usage.
    Type of Medium: Online Resource
    ISSN: 2347-5641
    Language: Unknown
    Publisher: Sciencedomain International
    Publication Date: 2020
    detail.hit.zdb_id: 2810065-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: European Journal of Nutrition & Food Safety, Sciencedomain International, ( 2020-04-15), p. 10-14
    Abstract: In preparation for a legal implementation of EU-regulation 1829/2003, the Norwegian Scientific Committee for Food Safety (VKM) has been requested by the Norwegian Environment Agency (former Norwegian Directorate for Nature Management) and the Norwegian Food Safety Authority (NFSA) to conduct final food/feed and environmental risk assessments for all genetically modified organisms (GMOs) and products containing or consisting of GMOs that are authorized in the European Union under Directive 2001/18/EC or Regulation 1829/2003/EC. The request covers scope(s) relevant to the Gene Technology Act. The request does not cover GMOs that VKM already has conducted its final risk assessments on. However, the Agency and NFSA requests VKM to consider whether updates or other changes to earlier submitted assessments are necessary.   Four notifications/applications for placing on the market of insect resistant genetically modified maize 1507 from Pioneer HiBreed & Dow AgroSciences (Unique Identifier DAS-Ø15Ø7-1) have been taken into account:     Application EFSA/GMO/NL/2004/02 for placing on the market of insect-tolerant genetically modified maize 1507 for food use under Regulation (EC) 1829/2003  Food and food ingredients containing, consisting of or produced from maize 1507 approved since 3 March 2006 (Commission Decision 2006/197/EC) Notification C/NL/00/10 for import and processing use under Part C of Diretive 2001/18/EC. Approved for importation, processing and feed use since 3 November 2005 (Commission Decision 2005/772/EC) Application EFSA/GMO/RX/1507 for renewal of authorisation of existing products of maize 1507 under Regulation (EC) no 1829/2003  Renewing of the authorisation of existing feed products from maize 1507 granted since 17 June 2011 (Commission Decision 2011/365/EC). Notification C/ES/01/01 for cultivation, import, processing and use as any other maize (excluding food uses) under Directive 2001/18/EC on the deliberate release of GMOs into the environment. The application is still pending for authorisation.   Genetically modified maize 1507 has previously been assessed as food and feed by the VKM GMO Panel commissioned by the Norwegian Food Safety Authority in connection with the EFSA official hearing of the application EFSA/GMO/NL/2004/02 in 2004 (VKM 2004). Maize 1507 has also been evaluated by the VKM GMO Panel as a component of several stacked GM maize events under Regulation (EC) 1829/2003 (VKM 2005b, 2007a,b, 2008a,b, 2009a,b, 2012a,b,c, 2013 a,b,c,d,e).   The food/feed and environmental risk assessment of the GM maize 1507 is based on information provided by the applicant in the notifications C/ES/01/01 and C/NL/00/10 and the applications EFSA/GMO/NL/2004/02 and EFSA/GMO/RX/1507, previous risk assessments performed by the VKM GMO Panel and scientific opinions and comments from EFSA and other member states made available on the EFSA website GMO Extranet. The risk assessment is also based on a risk analysis report of 1507 from the Australia New Zealand Food Authority (FSANZ 2002) and a review and assessment of relevant peer-reviewed scientific literature.   The VKM GMO Panel has evaluated maize 1507 with reference to its intended uses in the European Economic Area (EEA), and according to the principles described in the Norwegian Food Act, the Norwegian Gene Technology Act and regulations relating to impact assessment pursuant to the Gene Technology Act, Directive 2001/18/EC on the deliberate release into the environment of genetically modified organisms, and Regulation (EC) No 1829/2003 on genetically modified food and feed. The Norwegian Scientific Committee for Food Safety has also decided to take account of the appropriate principles described in the EFSA guidelines for the risk assessment of GM plants and derived food and feed (EFSA 2011a), the environmental risk assessment of GM plants (EFSA 2010a), selection of comparators for the risk assessment of GM plants (EFSA 2011b) and for the post-market environmental monitoring of GM plants (EFSA 2011c).  The scientific risk assessment of maize 1507 include molecular characterisation of the inserted DNA and expression of novel proteins, comparative assessment of agronomic and phenotypic characteristics, nutritional assessments, toxicology and allergenicity, unintended effects on plant fitness, potential for gene transfer, interactions between the GM plant and target and non-target organisms and effects on biogeochemical processes.   It is emphasised that the VKM mandate does not include assessments of contribution to sustainable development, societal utility and ethical considerations, according to the Norwegian Gene Technology Act and Regulations relating to impact assessment pursuant to the Gene Technology Act. These considerations are therefore not part of the risk assessment provided by the VKM Panel on Genetically Modified Organisms.   The genetically modified maize 1507 has been developed to provide protection against certain lepidopteran target pests, such as the European corn borer (ECB, Ostrinia nubilalis), and some species belonging to the genus Sesamia.  The insect resistence is achieved through expression of a synthetic version of the truncated cry1F gene derived from Bacillus thuringiensis subsp. aizawai, a common soil bacterium.   Maize 1507 also expresses the phosphinothricin-N-acetyltransferase (pat) gene, from the soil bacterium Streptomyces viridochromogenes. The encoded PAT protein confers tolerance to the herbicidal active substance glufosinate-ammonium. The PAT protein produced by maize 1507 has been used as a selectable marker to facilitate the selection process of transformed plant cells and is not intended for weed management purposes. Since the scope of the notification C/ES/01/01 does not cover the use of glufosinate-ammonium-containing herbicides on maize 1507, potential effects due to the use of such herbicides on maize 1507 are not considered by VKM.  Molecular Characterisation:  Appropriate analyses of the transgenic DNA insert, its integration site, number of inserts and flanking sequences in the maize genome, have been performed. The results show that only one copy of the insert is present in maize 1507. Homology searches with databases of known toxins and allergens have not indicated any potential production of harmful proteins or polypeptides caused by the genetic modification in maize 1507. Southern blot analyses and segregation studies show that the introduced genes cry1F and pat are stably inherited and expressed over several generations along with the phenotypic characteristics of maize 1507. The VKM GMO Panel considers the molecular characterisation of maize 1507 satisfactory.  Comparative Assessment: Comparative analyses of maize 1507 to its non-GM conventional counterpart have been performed during multiple field trials located at representative sites and environments in Chile (1998/99), USA (1999) and in Europe (1999, 2000 and 2002). With the exception of small intermittent variations, no biologically significant differences were found between maize 1507 and the conventional maize. Based on the assessment of available data, the VKM GMO Panel concludes that maize 1507 is compositionally, agronomically and phenotypically equivalent to its conventional counterpart, except for the introduced characteristics, and that its composition fell within the normal ranges of variation observed among non-GM varieties.   Food and Feed Safety Assessment: Whole food feeding studies on rats, broilers, pullets, pigs and cattle have not indicated any adverse health effects of maize 1507. These studies also indicate that maize 1507 is nutritionally equivalent to conventional maize. The PAT and Cry1F proteins do not show sequence resemblance to other known toxins or IgE allergens, nor have they been reported to cause IgE mediated allergic reactions. Some studies have however indicated a potential role of Cry-proteins as adjuvants in allergic reactions. Based on current knowledge, the VKM GMO Panel concludes that maize 1507 is nutritionally equivalent to conventional maize varieties. It is unlikely that the PAT and Cry1F proteins will introduce a toxic or allergenic potential in food or feed based on maize 1507 compared to conventional maize.  Environmental Risk: There are no reports of the target lepidopteran species attaining pest status on maize in Norway. Since there are no Bt-based insecticides approved for use in Norway, and lepidopteran pests have not been registered in maize, issues related to resistance evolution in target pests are not relevant at present for Norwegian agriculture.  There are only a limited number of published scientific studies on the environmental effects of Cry1F protein. Published scientific studies showed that the likelihood of negative effects of Cry1F protein on non-target arthropods that live on or in the vicinity of maize plants is low. Cultivation of maize 1507 is not considered to represent a threat to the prevalence of red-listed species in Norway.  Few studies have been published examining potential effects of Cry1F toxin on ecosystems in soil, mineralization, nutrient turnover and soil communities. Some field studies have indicated that root exudates and decaying plant material containing Cry proteins may affect population size and activity of rhizosphere organisms (soil protozoa and microorganisms). Most studies conclude that effects on soil microorganisms and microbial communities are transient and minor compared to effects caused by agronomic and environmental factors. However, data are only available from short term experiments and predictions of potential long term effects are difficult to deduce.  The VKM GMO Panel concludes that, although the data on the fate of the Cry1F protein and its potential interactions in soil are limited, the relevant scientific publications analysing the Cry1F protein, together with the relatively broad knowledge about the environmental fate of other Cry1 proteins, do not indicate significant direct effects on the soil environment.  Few studies have assessed the impact of Cry proteins on non-target aquatic arthropods and the fate of these proteins in senescent and decaying maize detritus in aquatic environments, and no specific lower-tier studies, assessing the impact of the Cry1F protein on non-target aquatic arthropods have been reported in the scientific literature so far.  However, exposure of non-target organisms to Cry proteins in aquatic ecosystems is likely to be very low, and potential exposure of Bt toxins to nontarget organisms in aquatic ecosystems in Norway is considered to be negligible.                                                                                                                                                      Maize is the only representative of the genus Zea in Europe, and there are no cross-compatible wild or weedy relatives outside cultivation with which maize can hybridise and form backcross progeny. Vertical gene transfer in maize therefore depends on cross-pollination with other conventional or organic maize varieties. In addition, unintended admixture of genetically modified material in seeds represents a possible way for gene flow between different crop cultivations. The risk of pollen flow from maize volunteers is negligible under Norwegian growing conditions.   Overall Conclusion: Based on current knowledge, the VKM GMO Panel concludes that maize 1507 is nutritionally equivalent to conventional maize varieties. It is unlikely that the Cry1 and PAT proteins will introduce a toxic or allergenic potential in food or feed derived from maize 1507 compared to conventional maize.   The VKM GMO Panel likewise concludes that cultivation of maize 1507 is unlikely to have any adverse effect on the environment and agriculture in Norway.
    Type of Medium: Online Resource
    ISSN: 2347-5641
    Language: Unknown
    Publisher: Sciencedomain International
    Publication Date: 2020
    detail.hit.zdb_id: 2810065-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: European Journal of Nutrition & Food Safety, Sciencedomain International, ( 2020-04-15), p. 1-4
    Abstract: In preparation for a legal implementation of EU-regulation 1829/2003, the Norwegian Environment Agency has requested the Norwegian Food Safety Authority to give final opinions on all genetically modified organisms (GMOs) and products containing or consisting of GMOs that are authorized in the European Union under Directive 2001/18/EC or Regulation 1829/2003/EC within the Authority’s sectorial responsibility.  The Norwegian Food Safety Authority has therefore, by letter dated 13 February 2013 (ref. 2012/150202), requested the Norwegian Scientific Committee for Food Safety (VKM) to carry out scientific risk assessments of 39 GMOs and products containing or consisting of GMOs that are authorized in the European Union. The request covers scope(s) relevant to the Gene Technology Act. The request does not cover GMOs that VKM already has conducted its final risk assessments on. However, the Agency requests VKM to consider whether updates or other changes to earlier submitted assessments are necessary. The insect-resistant and herbicide-tolerant genetically modified maize Bt11 x MIR604 x GA21 (Unique Identifier  SYN-BTØ11-1 x SYN-IR6Ø4-5 x MON-ØØØ21-9 ) from Syngenta Seeds  is approved under Regulation (EC) No 1829/2003 for food and feed uses, import and processing since  22 December 2011 (Commission Decision 2011/893/EC).  Genetically modified maize Bt11 x MIR604 x GA21 has previously been risk assessed by the VKM Panel on Genetically Modified Organisms (GMO), commissioned by the Norwegian Food Safety Authority  and the Norwegian Environment Agency related to the EFSAs public hearing of the application EFSA/GMO/UK/2008/56 in 2008 (VKM 2008a). In addition, Bt11, MIR604 and GA21 has been evaluated by the VKM GMO Panel as single events and as a component of several stacked GM maize events (VKM 2005a,b,c, 2007, 2009a,b,c,d, 2010, 2011, 2012a,b,). The food/feed and environmental risk assessment of the maize Bt11 x MIR604 x GA21 is based on information provided by the applicant in the application EFSA/GMO/UK/2008/56 and scientific comments from EFSA and other member states made available on the EFSA website GMO Extranet. The risk assessment also considered other peer-reviewed scientific literature as relevant.   The VKM GMO Panel has evaluated Bt11 x MIR604 x GA21 with reference to its intended uses in the European Economic Area (EEA), and according to the principles described in the Norwegian Food Act, the Norwegian Gene Technology Act and regulations relating to impact assessment pursuant to the Gene Technology Act, Directive 2001/18/EC on the deliberate release into the environment of genetically modified organisms, and Regulation (EC) No 1829/2003 on genetically modified food and feed. The Norwegian Scientific Committee for Food Safety has also decided to take account of the appropriate principles described in the EFSA guidelines for the risk assessment of GM plants and derived food and feed (EFSA 2011a), the environmental risk assessment of GM plants (EFSA 2010) and selection of comparators for the risk assessment of GM plants (EFSA 2011b).  The scientific risk assessment of maize Bt11 x MIR604 x GA21 include molecular characterisation of the inserted DNA and expression of novel proteins, comparative assessment of agronomic and phenotypic characteristics, nutritional assessments, toxicology and allergenicity, unintended effects on plant fitness, potential for gene transfer, interactions between the GM plant and target and non-target organisms and effects on biogeochemical processes.  It is emphasized that the VKM mandate does not include assessments of contribution to sustainable development, societal utility and ethical considerations, according to the Norwegian Gene Technology Act and Regulations relating to impact assessment pursuant to the Gene Technology Act. These considerations are therefore not part of the risk assessment provided by the VKM Panel on Genetically Modified Organisms.  The genetically modified maize stack Bt11 x MIR604 x GA21 has been produced by conventional crossing between inbred lines of maize containing the single events Bt11, MIR604 and GA21. The F1 hybrid was developed to provide protection against certain lepidopteran and coleopteran target pests, and to confer tolerance to glufosinate-ammonium glyphosate-based herbicides.  Molecular Characterisation:Southern blot and PCR analyses have indicated that the recombinant inserts in the parental maize lines Bt11, MIR604 and GA21 are retained in the stacked maize Bt11 x MIR604 x GA21. Genetic stability of the inserts has previously been demonstrated in the parental maize lines. Protein levels measured by ELISA show comparable levels of the Cry1Ab, PAT, mCry3A, PMI and mEPSPS proteins between the stacked and single maize lines. Phenotypic analyses also indicate stability of the insect resistance and herbicide tolerance traits in the stacked maize. The VKM Panel on GMO considers the molecular characterisation of maize Bt11 x MIR604 x GA21 and its parental events Bt11, MIR604 and GA21 as adequate.  Comparative Assessment: Comparative analyses of data from field trials located at representative sites and environments in North America during the 2006 growing season indicate that maize stack Bt11 x MIR604 x GA21 is compositionally, agronomically and phenotypically equivalent to its conventional counterpart, with the exception of the insect resistance and the herbicide tolerance, conferred by the expression of Cry1Ab, mCry3A, PAT, PMI and mEPSPS proteins. Based on the assessment of available data, the VKM GMO Panel is of the opinion that conventional crossing of maize Bt11, MIR604 and GA21 to produce the hybrid Bt11 x MIR604 x GA21 does not result in interactions between the newly expressed proteins affecting composition and agronomic characteristics.   Food and Feed Risk Assessment: A whole food feeding study on broilers has not indicated any adverse health effects of maize Bt11 x MIR604 x GA21, and shows that maize Bt11 x MIR604 x GA21 is nutritionally equivalent to conventional maize. The Cry1Ab, PAT, mEPSPS, mCry3A or PMI proteins do not show sequence resemblance to other known toxins or IgE allergens, nor have they been reported to cause IgE mediated allergic reactions. Some studies have however indicated a potential role of Cry-proteins as adjuvants in allergic reactions. Based on current knowledge, the VKM GMO Panel concludes that maize Bt11 x MIR604 x GA21 is nutritionally equivalent to conventional maize varieties. It is unlikely that the Cry1Ab, PAT, mEPSPS, mCry3A or PMI proteins will introduce a toxic or allergenic potential in food or feed based on maize Bt11 x MIR604 x GA21 compared to conventional maize. Environmental Risk Assessment: The scope of the application EFSA/GMO/UK/2008/56 includes import and processing of maize stack Bt11 x MIR604 x GA21 for food and feed uses. Considering the intended uses of maize Bt11 x MIR604 x GA21, excluding cultivation, the environmental risk assessment is concerned with accidental release into the environment of viable grains during transportation and processing, and indirect exposure, mainly through manure and faeces from animals fed grains from maize Bt11 x MIR604 x GA21.  Maize Bt11 x MIR604 x GA21 has no altered survival, multiplication or dissemination characteristics, and there are no indications of an increased likelihood of spread and establishment of feral maize plants in the case of accidental release into the environment of seeds from maize GA21. Maize is the only representative of the genus Zea in Europe, and there are no cross-compatible wild or weedy relatives outside cultivation. The VKM GMO Panel considers the risk of gene flow from occasional feral GM maize plants to conventional maize varieties to be negligible in Norway. Considering the intended use as food and feed, interactions with the biotic and abiotic environment are not considered by the GMO Panel to be an issue. Overall Conclusion: Based on current knowledge, the VKM GMO Panel concludes that maize Bt11 x MIR604 x GA21 is nutritionally equivalent to conventional maize varieties. It is unlikely that the Cry1Ab, PAT, mEPSPS, mCry3A or PMI proteins will introduce a toxic or allergenic potential in food or feed based on maize Bt11 x MIR604 x GA21 compared to conventional maize. The VKM GMO Panel likewise concludes that maize Bt11 x MIR604 x GA21, based on current knowledge, is comparable to conventional maize varieties concerning environmental risk in Norway with the intended usage.
    Type of Medium: Online Resource
    ISSN: 2347-5641
    Language: Unknown
    Publisher: Sciencedomain International
    Publication Date: 2020
    detail.hit.zdb_id: 2810065-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: European Journal of Nutrition & Food Safety, Sciencedomain International, ( 2020-01-24), p. 238-241
    Abstract: In preparation for a legal implementation of EU-regulation 1829/2003, the Norwegian Scientific Committee for Food Safety (VKM) has been requested by the Norwegian Environment Agency (former Norwegian Directorate for Nature Management) and the Norwegian Food Safety Authority (NFSA) to conduct final food/feed and environmental risk assessments for all genetically modified organisms (GMOs) and products containing or consisting of GMOs that are authorized in the European Union under Directive 2001/18/EC or Regulation 1829/2003/EC. The request covers scope(s) relevant to the Gene Technology Act. The request does not cover GMOs that VKM already has conducted its final risk assessments on. However, the Agency and NFSA requests VKM to consider whether updates or other changes to earlier submitted assessments are necessary.  The insect-resistant and herbicide-tolerant genetically modified maize 59122 x 1507 x NK603 from Pioneer Hi-Bred International, Inc. (Unique Identifier DAS-59122-7 x DAS-Ø15Ø7-1 x MONØØ6Ø3-6) is approved under Regulation (EC) No 1829/2003 for food and feed uses, import and processing since 28 July 2010 (Commission Decision 2010/428/EU).   Genetically modified maize 59122 x 1507 x NK603 has previously been risk assessed by the VKM Panel on Genetically Modified Organisms (GMO), commissioned by the Norwegian Food Safety Authority related to the EFSAs public hearing of the application EFSA/GMO/NL/2005/20 in 2007 (VKM 2007a). In addition, 59122 x 1507 x NK603 has been evaluated by the VKM GMO Panel as single events and as a component of several stacked GM maize events (VKM 2004, VKM 2005a,b, VKM 2007b,c, VKM 2008b,c, VKM 2009a,b, VKM 2012).   The food/feed and environmental risk assessment of the maize 59122 x 1507 x NK603 is based on information provided by the applicant in the application EFSA/GMO/UK/2005/21, and scientific comments from EFSA and other member states made available on the EFSA website GMO Extranet. The risk assessment also considered other peer-reviewed scientific literature as relevant.    The VKM GMO Panel has evaluated 59122 x 1507 x NK603 with reference to its intended uses in the European Economic Area (EEA), and according to the principles described in the Norwegian Food Act, the Norwegian Gene Technology Act and regulations relating to impact assessment pursuant to the Gene Technology Act, Directive 2001/18/EC on the deliberate release into the environment of genetically modified organisms, and Regulation (EC) No 1829/2003 on genetically modified food and feed. The Norwegian Scientific Committee for Food Safety has also decided to take account of the appropriate principles described in the EFSA guidelines for the risk assessment of GM plants and derived food and feed (EFSA 2011a), the environmental risk assessment of GM plants (EFSA 2010), selection of comparators for the risk assessment of GM plants (EFSA 2011b) and for the post-market environmental monitoring of GM plants (EFSA 2011c).  The scientific risk assessment of maize 59122 x 1507 x NK603 include molecular characterisation of the inserted DNA and expression of novel proteins, comparative assessment of agronomic and phenotypic characteristics, nutritional assessments, toxicology and allergenicity, unintended effects on plant fitness, potential for gene transfer, interactions between the GM plant and target and non-target organisms, effects on biogeochemical processes.   It is emphasized that the VKM mandate does not include assessments of contribution to sustainable development, societal utility and ethical considerations, according to the Norwegian Gene Technology Act and Regulations relating to impact assessment pursuant to the Gene Technology Act. These considerations are therefore not part of the risk assessment provided by the VKM Panel on Genetically Modified Organisms.  The genetically modified maize stack 59122 x 1507 x NK603 was produced by conventional breeding between inbred lines of maize containing the 59122, 1507 and NK603 events. The hybrid was developed to provide protection against certain lepidopteran and coleopteran target pests, and to confer tolerance to glufosinate-ammonium and glyphosate herbicides.  Molecular Characterization:  As conventional breeding methods were used in the production of maize 59122 x 1507 x NK603, no additional genetic modification was involved. Southern and PCR analyses demonstrated that the recombinant insert in the single 59122, 1507 and NK603 events were retained in maize stack 59122 x 1507 x NK603. Genetic stability of the inserts has been demonstrated in the parental lines 59122, 1507 and NK603. Phenotypic analyses demonstrated stability of the insect resistance and herbicide tolerance traits in the hybrid. The expression levels of Cry1F, Cry34Ab1, Cry35Ab1, PAT and CP4 EPSPS proteins in seeds and forage were considered comparable with those in the single events.  Comparative Assessment:  The applicant present compositional data on forage and grain material collected from field trials in Europe and North America. Comparative analyses of data from the Europe field trials indicate that maize stack 59122 x 1507 x NK603 is compositionally, agronomically and phenotypically equivalent to its conventional counterpart, with the exception of the introduced insect resistance and herbicide tolerance, conferred by the expression of the Cry1F, Cry34Ab1, Cry35Ab1, PAT               and CP4 EPSPS proteins. In the North American field trials, however, compositional,                 agronomic and phenotypic characteristics of maize 59122 x 1507 x NK603 was compared to a null-segregant comparator. As negative segregants are derived from a GM organism, the VKM GMO Panel does not consider them appropriate conventional counterparts with a history of safe use. Data obtained from field trials with negative segregants are considered as supplementary information only.   Based on the assessment of available data, the VKM GMO Panel is of the opinion that conventional crossing of maize 59122, 1507 and NK603 to produce the hybrid 59122 x 1507 x NK603 does not result in interactions that cause compositional, agronomic and phenotypic changes that would raise safety concerns.  Food and Feed Safety Assessment:  A poultry feeding study, conducted over a 42-day period, indicated no sub-chronic adverse effects of diets prepared with 59122 x 1507 x NK603 maize. Bioinformatics analyses have not revealed expression of any known ORFs in the parental maize events, and none of the newly expressed proteins showed resemblance to any known toxins or allergens. None of the proteins have been reported to cause IgE mediated allergic reactions. Some studies have, however, indicated a potential role of Cryproteins as adjuvants in allergic reactions.  Acute and repeated dose toxicity tests in rodents have not indicated toxic effects of the newly expressed proteins. However, these tests do not provide any additional information about possible adverse effects of the stacked event maize 59122 x 1507 x NK603.   Based on the current knowledge, the VKM GMO Panel concludes that 59122 x 1507 x NK603 maize is nutritionally equivalent to its conventional counterpart, and that it is unlikely that the newly expressed proteins introduce a toxic or allergenic potential in food and feed derived from maize 59122 x 1507 x NK603 compared to conventional maize.  Environmental Risk Assessment:  The scope of the application EFSA/GMO/UK/2005/21 includes import and processing of maize stack 59122 x 1507 x NK603 for food and feed uses. Considering the intended uses of maize 59122 x 1507 x NK603, excluding cultivation, the environmental risk assessment is concerned with accidental release into the environment of viable grains during transportation and processing, and indirect exposure, mainly through manure and faeces from animals fed grains from maize 59122 x 1507 x NK603.  Maize 59122 x 1507 x NK603 has no altered survival, multiplication or dissemination characteristics, and there are no indications of an increased likelihood of spread and establishment of feral maize plants in the case of accidental release into the environment of seeds from maize 59122 x 1507 x NK603. Maize is the only representative of the genus Zea in Europe, and there are no crosscompatible wild or weedy relatives outside cultivation. The VKM GMO Panel considers the risk of gene flow from occasional feral GM maize plants to conventional maize varieties to be negligible in Norway. Considering the intended use as food and feed, interactions with the biotic and abiotic environment are not considered by the GMO Panel to be an issue.  Overall Conclusion:  The VKM GMO Panel has not identified toxic or altered nutritional properties of maize 59122 x 1507 x NK603 or its processed products compared to conventional maize. Based on current knowledge, it is also unlikely that the newly expressed proteins will increase the allergenic potential of food and feed derived from maize 59122 x 1507 x NK603 compared to conventional maize varieties.   The VKM GMO Panel likewise concludes that maize 59122 x 1507 x NK603, based on current knowledge, is comparable to conventional maize varieties concerning environmental risk in Norway with the intended usage.
    Type of Medium: Online Resource
    ISSN: 2347-5641
    Language: Unknown
    Publisher: Sciencedomain International
    Publication Date: 2020
    detail.hit.zdb_id: 2810065-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...