GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Experimental Hematology, Elsevier BV, Vol. 39, No. 6 ( 2011-06), p. 686-696.e4
    Type of Medium: Online Resource
    ISSN: 0301-472X
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2011
    detail.hit.zdb_id: 185107-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of the American College of Cardiology, Elsevier BV, Vol. 60, No. 17 ( 2012-10), p. B19-
    Type of Medium: Online Resource
    ISSN: 0735-1097
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2012
    detail.hit.zdb_id: 605507-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 134, No. Supplement_1 ( 2019-11-13), p. 2242-2242
    Abstract: The ongoing clinical trials, based on the use of lenti-globin vectors for beta-globinopathies, indicate that current vectors require high number of integrations (~3-4 copies per genome) in a pancellular fashion to make a patient transfusion independent, regardless of the genotype. This increased VCN requirement could increase the risk of genome toxicity, limiting the application of these vectors and preventing their use in a reduced myeloablative regimen. To overcome this limitation we designed new vectors, using modification or inclusion of a variety of regulatory genomic elements aiming to increase expression of the beta-globin gene. We performed in vitro and in vivo studies to compare the ability of these constructs to express the therapeutic gene with a low number of integrations and reduced chimerism. We screened new constructs using a CRISPR-Cas9 modified clonal cell line, HUDEPM#13, which derives from the previously described erythroid HUDEP-2 cell line (Kurita, 2013). Upon differentiation, HUDEPM#13 cells produce a hemoglobin variant (HbMut) that can be discriminated by liquid chromatography from the adult hemoglobin (HbA) produced by the transgene in the lentiviruses. Among our candidates we identified a construct, indicated as ALS20, that synthesizes HbA at high level at a single integration (VCN). Moreover, ALS20 produced significantly more HbA per copy than constructs currently utilized in clinical trials, which were reproduced based on the literature (Negre, 2015; Miccio, 2008; and Boulad, 2014) and designated CV-1, CV-2, and CV-3, respectively. In erythroblasts differentiated in vitro from patients with SCD ALS20 produces, on average, 21% HbA at VCN=1(P 〈 0.001). CV1, which proved to be the most powerful among the clinical vectors tested in HUDEP#M13, produces, on average, 14.9% HbA at VCN=1 (P 〈 0.001). Overall, ALS20 expresses 40% more HbA per VCN in patients' cells, confirming results observed in the mutant HUDEP cell line. In a parallel potency assay, we tested ALS20 using beta0/beta0 thalassemic specimens, which represent the most severe phenotype to correct, due to complete absence of HbA production. Statistical analyses indicate that ALS20 produces, on average, 32.5% HbA at VCN=1 (P 〈 0.001). All results were obtained targeting a range between 0 and 3 integrations, using dilutions of the viral product. Our ongoing bone marrow transplantation studies, using a semi-myeloablative conditioning based on busulfan administration on the beta thalassemia Hbbth3/+mouse model, indicate that ALS20 is curative at VCN lower than 1. In fact, mice with an average of 0.8 copies per genome and 65% transgenic chimerism, present Hb levels of 13.6g/dL, reiterating the potential of this new lentivirus in vivo. In immunocompromised NSG mice, injection of human CD34+cells transduced with ALS20 did not trigger tumor formation or meaningful pathological changes. The safety of our vector has been further assessed using an in vitro immortalization assay on primary mouse BM cells, in which no clonal survival has been observed. Finally, genome integration analyses on human CD34+cells infected with ALS20 showed that none of the examined samples had clones that exceeded the 20% abundance threshold, in accordance with the expected level of safety for gene therapy-based approaches. In summary, we have identified a powerful new lentiviral vector with an enhanced ability to synthesize hemoglobin with a low number of integrations. ALS20's performance has been demonstrated in specimens from patients with hemoglobinopathies as well as in mice affected by thalassemia. Treatment of thalassemia and SCD with ALS20 could reduce the risk of cytotoxic events due to high levels of integration, and also lessen the intensity of the myeloablative regimen to correct anemia in patients. This, in addition with its confirmed safety features, makes this construct an outstanding candidate for clinical trial. Disclosures Kwiatkowski: Imara: Consultancy; Apopharma: Research Funding; Terumo: Research Funding; Novartis: Research Funding; bluebird bio, Inc.: Consultancy, Research Funding; Agios: Consultancy; Celgene: Consultancy. Rivella:Meira GTx, Ionis Pharmaceutical: Membership on an entity's Board of Directors or advisory committees; Disc medicine, Protagonist, LIPC, Meira GTx: Consultancy.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 138, No. Supplement 1 ( 2021-11-05), p. 2012-2012
    Abstract: Alpha thalassemia (α-thal) is caused by insufficient production of the α-globin protein because of either deletional or non-deletional inactivation of endogenous α-globin genes. Clinical presentation of deletional α-thal varies from an asymptomatic condition (one inactivated α-globin gene) to a complete knockout (Hb Bart's Hydrops Fetalis). In patients with severe α-thal, a blood transfusion independent state is achievable through allogeneic bone marrow transplantation. The aims of this study are to develop a novel adult mouse model of α-thal and a gene therapy approach for this disease. We generated adult animals that do not produce α-globin chains (α-KO) through transplantation of homozygous B6.129S7-Hbatm1Paz/J fetal liver cells (FLC; isolated at E14.5) into WT recipient mice. These animals demonstrate a worsening phenotype, paradoxically showing elevated hematocrit, high reticulocyte count and a high number of red blood cells (RBC) which expressed only β-globin chains (HbH). RBC show aberrant morphology and aggregation of α- globin tetramers on RBC membranes. Due to severe inability of these RBC to deliver oxygen, the mice eventually succumb to anemia, showing splenomegaly and other organ pathologies, including vaso-occlusive events. These animals show iron deposition in the liver and kidney, in agreement with very low levels of hepcidin expression in the liver, and elevated erythropoietin (EPO) in the kidney. Interestingly, α-KO embryos show lower numbers of FLC compared to WT embryos, lower frequency of engraftable hematopoietic stem cells (HSC; Lin-Sca-1+c-kit+CD48-), decreased clonogenic potential (fewer class 4 CFUs) and elevated erythroferrone. Lethally irradiated mice transplanted with FLC-KO require 5-6x as many cells as those transplanted with FLC-WT for recovery, further suggesting some level of engraftment impairment. Our current hypothesis is that excessive hypoxia in the embryos impairs HSC function and stem cell fitness. Additional assays are in progress to assess the nature of this impairment. To generate a gene therapy tool to rescue these animals and eventually cure severe human α-thal patients, we screened multiple lentiviral vectors to identify the variant capable of producing the highest human α-globin protein per copy. The selection was conducted in murine erythroleukemia cells and human umbilical cord derived erythroid progenitor (HUDEP) cells, modified by knocking out all the human α-globin genes. We identified ALS20α, a vector where α-globin is under control of the β-globin promoter and its locus control region, as the most efficient vector. One copy of ALS20α produces exogenous α-globin at a level comparable to that produced by one endogenous α-globin gene. These results suggest that a relatively low VCN could result in dramatic therapeutic benefits. Transplantation of ALS20α transduced murine BM-KO results in correction of the disease phenotype in a dose-dependent manner. At VCN & lt;1 we observe a delay in death proportional to the VCN value, while at VCN & gt;1 we observe phenotypic normalization, including Hb, hepcidin and EPO levels. We tested ALS20α in CD34 cells isolated from four patients with both deletional and non- deletional HbH disease. We measured the change of β/α-globin mRNA ratio (β/αR) and protein level by HPLC in erythroblasts derived from these cultures. For the specimen with mutational HbH, the initial β/αR matches that of healthy controls, as the mutations do not eliminate the ability for the gene to produce aberrant mRNA transcripts, and decreased with increasing VCN. Erythroblasts with deletional HbH have a β/αR approximately 3x higher than normal cells, decreasing in a dose dependent manner with increasing VCN. HPLC detection of HbH (β4), a hallmark of HbH disease, is observed in hemolysis products from all non-transduced α−thal erythroblasts. A ~50% reduction of HbH is detected in the very same specimens upon integration of ALS20α (VCN between 1 and 2). In conclusion, we generated an adult mouse model of lethal α-thal and, in preliminary experiments, we rescue it with ALS20α. Furthermore, ALS20α successfully improves α-globin levels in patient cells. Further experiments are in progress to establish the consistency of our vector's expression in vivo, as well as to demonstrate its ability to transduce bona fide long-term HSCs. Disclosures Kattamis: Agios Pharmaceuticals: Consultancy; IONIS: Consultancy; VIFOR: Consultancy; CRISPR/Vertex: Consultancy, Honoraria; BMS/Celgene: Consultancy, Honoraria, Research Funding; Chiesi: Honoraria; Novartis: Consultancy, Honoraria, Research Funding; Amgen: Consultancy. Rivella: Celgene Corporation: Consultancy; Keros Therapeutics: Consultancy, Membership on an entity's Board of Directors or advisory committees; Disc Medicine: Consultancy, Membership on an entity's Board of Directors or advisory committees; MeiraGTx: Consultancy, Membership on an entity's Board of Directors or advisory committees; Forma Theraputics: Consultancy; Incyte: Consultancy; Ionis Pharmaceuticals: Consultancy, Membership on an entity's Board of Directors or advisory committees.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2021
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Society of Hematology ; 2021
    In:  Blood Vol. 138, No. Supplement 1 ( 2021-11-05), p. 3131-3131
    In: Blood, American Society of Hematology, Vol. 138, No. Supplement 1 ( 2021-11-05), p. 3131-3131
    Abstract: In humans, interleukin 7 (IL-7) receptor (IL-7R) deficiency causes approximately 10% of cases of severe combined immunodeficiency (SCID). IL-7R deficient SCID is a T-B+NK+ SCID and is caused by autosomal recessive deficiency of the IL-7R alpha chain gene (IL7R). IL-7R is a heterodimeric receptor comprised of the alpha chain and the IL-2 receptor common gamma chain (IL2RG). In both mouse and human, IL-7R is a marker of the common lymphoid progenitor cell, and IL-7 signaling leads to STAT5 phosphorylation and proliferation of developing T and B cells. Mice lacking IL7R, Il7r -/-, lack both T and B cells (Peschon, JJ, et al. J Exp Med. 1994). T cells do not progress to TCR beta chain rearrangement and B cell development is halted at the pre-pro-B cell stage. Similar to the mouse, IL-7 signaling in humans is required for T cell receptor beta gene rearrangement and T cell maintenance, however humans lacking IL-7R can develop B cells. A prior attempt to rescue murine IL-7R deficiency utilized a retroviral vector (mouse stem cell virus, MSCV), the MSCV retroviral promoter, and the murine Il7r gene (Jiang, Q, et al. Gene Therapy. 2005). This strategy did restore T cells and had variable restoration of B cells. However, retroviral-based gene addition of Il7r led to a myeloproliferative condition with significant neutrophilia and splenomegaly. Transduced bone marrow cells formed myeloid progenitors in response to IL-7 in vitro. We evaluated a novel gene therapy for IL-7R deficient SCID that utilizes the human IL7R gene. To prevent lineage skewing, we sought to limit ectopic expression of IL7R in non-lymphoid cells by utilizing the endogenous enhancers and promoters of IL7R. These sequences were identified as sites of high sequence conservation across species and DNA accessibility/hypersensitivity (DHS) in human lymphocytes. We are testing these sequences alone or in combination with the constitutive phosphoglycerate kinase promoter (PGK) in VSV-G pseudotyped lentiviral vectors (LV): vPGK_DHS_hIL7R and vDHS_hIL7R. Here we present the first data evaluating the ability of the human IL-7R protein to functionally replace the murine IL-7R protein and the ability of IL7R gene addition to rescue the murine Il7r -/- immunodeficient phenotype in vivo. Transduction of Il7r -/- bone marrow cells with IL7R encoding LV rescued the formation of lymphocyte precursors from murine bone marrow cells in colony forming unit (CFU) assays (pre-B CFU with human IL-7), with the most robust response seen with vPGK_DHS_hIL7R. Mouse bone marrow from Il7r -/- animals transduced ex vivo engrafted in lethally irradiated (8 Gy) Il7r -/-oppositegender recipients and there were no significant aberrations in absolute neutrophil count, hemoglobin or platelet count. Absolute lymphocyte counts in mice receiving transduced Il7r -/-bone marrow cells was higher (mean 2555/μL) than in mice receiving untransduced bone marrow (mean 1410/μL). The proportion of leukocytes that were T cells was 4.2-fold and 9.8-fold higher at 1 and 2 months post-transplant, respectively. B cells were only seen in mice receiving vPGK_DHS_hIL7R: 7.4% of leukocytes versus 1.5% in controls. A reciprocal decrease in the fraction of Gr1+ cells (neutrophils and monocytes) was seen at two months post-transplant in transduced marrow recipients compared to untransduced controls: 36.5% versus 63% Gr1+, respectively. Lymphocyte subsets are being further analyzed, bone marrow and thymic lymphoid precursors assessed, and T and B cell function in response to immunizations are in progress. Further evaluation in human derived IL7R deficient human cells is warranted. For individuals with IL-7R deficient SCID, but no HLA matched hematopoietic stem cell (HSC) donor, there is a difficult choice between the risks of GVHD with a mismatched HSC donor and supportive care with the hope of identifying a matched HSC donor in the future. In immunodeficiencies however age and serious infection are both associated with increased mortality (Pai, SY, et al. NJEM. 2014). This novel approach to IL7R gene replacement has the potential to be a therapeutic and expedient option for those without a matched donor. Additionally, this would be an ideal disorder for HSC conditioning with less toxic, HSC-targeted strategies given gene corrected lymphocytes and progenitors will preferentially expand post-transplant. Disclosures Rivella: Disc Medicine: Consultancy, Membership on an entity's Board of Directors or advisory committees; Keros Therapeutics: Consultancy, Membership on an entity's Board of Directors or advisory committees; Celgene Corporation: Consultancy; Ionis Pharmaceuticals: Consultancy, Membership on an entity's Board of Directors or advisory committees; MeiraGTx: Consultancy, Membership on an entity's Board of Directors or advisory committees; Forma Theraputics: Consultancy; Incyte: Consultancy.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2021
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Society of Hematology ; 2021
    In:  Blood Vol. 138, No. Supplement 1 ( 2021-11-05), p. 4287-4287
    In: Blood, American Society of Hematology, Vol. 138, No. Supplement 1 ( 2021-11-05), p. 4287-4287
    Abstract: The questions of whether thrombopoiesis - the release of platelets from megakaryocytes - occurs both as megakaryocytes emerge from the intramedullar space or occurs as well in the pulmonary vascular bed remains unanswered. Studies by Lefrançais E, et al, (Nature, 2017) demonstrated by in situ microcopy that perhaps 50% of all platelet release in mice occurs from megakaryocytes released from the marrow and traveled to the lungs where they undergo thrombopoiesis over a 20- to 60-minute time-period. We examined whether CD34+-derived human megakaryocytes infused into immunocompromized NSG mice would also shed platelets in the lungs in a similar fashion. We differentiated CD34+-derived hematopoietic stem-progenitors for 12 days in culture using conditions previously described (Wang Y, et al., Blood 2015). We found that unlike platelet-like-particle (PLP) formation in in vitro cultures of CD34+ hematopoietic progenitor cell (HPC)-derived (CD34+) megakaryocytes, which undergo asynchronous shedding of the PLPs, that over 95% of infused CD34+ megakaryocytes shed their platelets within the first 40 minutes much as has been observed for endogenous murine megakaryocytes. The average number of cytoplasmic extensions per megakaryocytes was ~2.7, again very similar to what was seen with endogenous murine megakaryocytes. In contrast, CD34+ cells grown in culture into megakaryocytes for a shorter period of time of only 7 days, poorly shed any cytoplasmic fragments. We also studied human megakaryocytes grown from immortalized megakaryocyte progenitor cell lines (imMKCLs) from induced pluripotent stem cells (iPSCs) generated by the Eto laboratory and kindly provided by Dr. Koji Eto, Kyoto University). These cells were grown and differentiated into terminal megakaryocytes as described (Nakamura S, Cell Stem Cell, 2014) for 4 days in culture. These cells have been proposed to be useful for large-scale preparation of PLPs in vitro for clinical use in place of donor-derived platelets. The resultant infused human imMKCL-derived megakaryocytes also synchronously shed platelets, but only 50% of the infused cells shed their cytoplasm in contrast to & gt;95% of CD34+ megakaryocytes. Moreover, cytoplasmic extensions were decreased to an average of ~1.1 per megakaryocyte. We had proposed that in vitro-generated megakaryocytes might be directly infused into patients in place of further manipulating the megakaryocytes to release functional platelets in vitro using a bioreactor. However, such megakaryocytes will likely be contaminated with a higher level of HPCs than anticipated from in vitro-prepared platelets, and concern exists that they may lead to unacceptable graft versus host complications. We, therefore, examined whether irradiating megakaryocytes as one strategy to eliminate this concern results in megakaryocytes that are still functional and found that megakaryocytes irradiated with up to 25 Gy retain platelet yield per infused megakaryocytes with the platelets having the same half-life. If irradiated and kept in culture, these megakaryocytes begin to shed platelets and undergo apoptosis notably by 24 hours. We also examined whether the pulmonary bed differs from other vascular beds, and infused CD34+ megakaryocytes both intravenously and intra-arterially in parallel studies and found that following intra-arterial infusion, megakaryocytes were mostly entrapped in various organs, but shed few platelets. Thus, our studies suggest that the pulmonary bed is unique for platelet shedding from entrapped megakaryocytes. Whether this is due to the structural organization of the pulmonary beds, its endothelial lining, its reverse exchange in oxygen, carbon dioxide and pH from other capillary beds or the mechanical forces of inhalation and exhalation that expand and contract the capillary cross-sectional area needs to be examined. Our studies show that infused human megakaryocytes synchronously release platelets over a 40-minute window and can do so even after being irradiated and that this occurs specifically in the lungs not only has potential clinical application, but also raises biological questions about what determines thrombopoiesis-readiness and what are the features of the pulmonary bed that allows this synchronous release. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2021
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Society of Hematology ; 2014
    In:  Blood Vol. 124, No. 21 ( 2014-12-06), p. 2881-2881
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 2881-2881
    Abstract: Ex vivo-generated (EV) platelets beginning with embryonic stem cells or induced pluripotent stem cells (iPSCs) or hematopoietic progenitors cells (HPCs) may have clinical utility over donor-derived platelets, and efforts to produce such EV-platelets have been pursued in several laboratories under static megakaryocyte (Meg) culture conditions. Success in generating these has been reported, even demonstrating EV-platelet incorporation into growing thrombi in murine models. We have pursued an alternative strategy for thrombopoiesis using EV-Megs, grown from either human adult HPCs or from iPSCs or fetal livers, and directly infusing them into NOD-SCID gamma-interferon-deficient (NSG) mice. These studies were based on our prior observation that infused murine EV-Megs into wildtype mice are entrapped in the pulmonary bed and over the subsequent 1-4 hours release a wave of functional platelets at a significant level. We now show that infusion of human EV-Megs do the same in NSG mice, but resulting in two different pools of derived platelets: (1) A pool of young (as determined by thiazole orange staining) platelets having the same bell-shaped size distribution was seen as after infusion of human donor-derived platelets in these mice. These platelets take several hours to appear, but then have the same half-life as donor-derived platelets. These platelets are derived from the infused EV-Megs and were termed in vivo-generated (IV)-platelets. (2) A second pool of mostly older platelets was present that originated during the static growth of the EV-Megs, and these EV-platelets varied widely in size and age. Initially, these platelets accounted for a third of all the human platelets seen. Unlike IV-platelets, EV-platelets are immediately present and circulate with a markedly short half-life of 2-3 hours unless the recipient NSG mice were pre-treated with clodronate-ladened liposomes to delete their macrophage pools. Rapid removal of EV-platelets by macrophages is due to their being preactivated as determined by surface P-selectin expression in whole mice blood. These EV-platelets also had very limited further responsiveness to convulxin activation. On the other hand, human IV-platelets were quiescent prior to agonist stimulation in whole mice blood and responded strongly to agonist, similar to human donor-derived platelets infused into NSG mice. The IV-platelets were also selectively incorporated into cremaster arteriole laser injury thrombi over EV-platelets. Finally, directly harvested “platelets” from EV static-grown Megs were isolated and analyzed both in vitro and in vivo. Only a third of these particles are CD41+/CD42+ platelets and approximately half are actually CD41-/CD42-. Both pools showed the same wide size distribution in vitro and in vivo after infusion into mice. The CD41+/CD42+ fraction behaved just as the EV-platelets, but the CD41-/CD42- fraction half-life was unaffected by pre-treatment with clodronate-ladened liposomes. In summary, infused human Megs grown under static growth conditions released platelets in a recipient mouse’s lung with features characteristic of donor-derived platelets. On the other hand, “platelets” harvested from the same Megs were predominantly not even platelets as measured using CD41/CD42 markers. The portion that were CD41+/CD42+ platelets were preactivated, poorly responsive to agonists, and cleared rapidly. These findings set a standard on how to judge the potential clinical value of platelets derived from EV-Megs and also raise concerns whether direct visual imaging of “platelet release” in static culture is biologically meaningful given that most particles released were not CD41+/CD42+ platelets, and the ones that were CD41+/CD42+ were mis-sized and functionally limited. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 134, No. Supplement_1 ( 2019-11-13), p. 220-220
    Abstract: FPDMM is an autosomal dominant disorder associated with qualitative and quantitative platelet defects and an elevated risk of developing acute myeloid leukemia (AML). FPDMM is due to haploinsufficiency of RUNX1, a transcription factor critical for definitive hematopoiesis and megakaryopoiesis. Currently, there are no drugs available for preventing either the bleeding diathesis or AML predisposition in FPDMM. We hypothesize that drugs that correct RUNX1 expression and/or activity in megakaryopoiesis would not only correct the platelet defect, but prevent leukemia progression. In our studies, we established two cell lines with isogenic controls from induced pluripotent stem cells (iPSC) to study the effects of RUNX1 haploinsufficiency in hematopoietic progenitor cells (iHPCs) and megakaryocytes (iMKs). The first iPSC line (FPD) was derived from patient cells harboring a splice mutation in RUNX1 and its isogenic control was created using the CRISPR/Cas9 technology (FPD-cor). The second line was a normal control iPSC line (WT6) in which the FPD splicing mutation was created by CRISPR/Cas9 gene editing (WT6-mut). When differentiated to iMKs, both lines recapitulated a disease phenotype showing decreased iMK yield per iHPC compared to their respective isogenic controls (29% and 42%, respectively). This decreased yield appeared to be due to depletion of a novel CD42+-iHPC subpopulation in both mutant lines compared to their isogenic controls (5% of isogenic controls (Fig. 1A)). Not shown, these HPCs are von Willibrand factor-positive and almost exclusively gives rise to Mks, thus we termed them Mk-biased. To investigate global and local gene expression changes underlying this depletion, single cell RNA sequencing was performed on sorted CD42+-iHPCs derived from the FPD and FPD-cor lines. In both, we defined 7 identical separate subpopulations, several of which were markedly deficient in the FPD CD42+-HPCs (Fig. 1B). Gene set enrichment analysis (GSEA) of genes upregulated in FPD CD42+-iHPCs from the Gene Ontology and Reactome databases indicates that regulation of response to stress and positive regulation of gene expression gene sets are enriched in FPD CD42+-iHPCs (Fig. 1C, shaded in red). Previously, RepSox, a TGFβ receptor 1 inhibitor, was described by others to enhance megakaryopoiesis in humans and mice, and to increase RUNX1 levels. We now show that RepSox can correct the deficient Mk-biased-HPC population (Fig. 1A) as well as return final iMK yield (not shown) to near FPD-cor levels. GSEA of genes downregulated in RepSox-treated FPD CD42+-iHPCs revealed enrichment of stress-response genes(Fig. 1C, shaded in blue). The stress-activated protein kinase c-Jun N-terminal kinase (JNK) is known to be activated by TGFβ1, various cellular stressors, and pro-inflammatory cytokines. Immunoblotting studies of FPD iMKs showed an elevation in baseline JNK2 phosphorylation (p-JNK) levels (Fig. 1D, left), which was not due to alteration in total JNK2 protein compared to isogenic control iMKs. Immunofluorescence microscopy studies supported these findings (Fig. 1D, right). In summary, we describe a novel defect in the inherited platelet disorder FPDMM by studying iPSC-derived hematopoietic cells. We note a marked deficiency of an MK-biased HPC population that may be related to a proinflammatory state in these HPCs potentially involving TGFβ1-related pathways. These findings need to be confirmed in other FPDMM patient iPSCs and show that it also applies to adult hematopoiesis. Whether the described defect is solely related to the observed thrombocytopenia or also is related to the observed AML defect needs also to be addressed. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Society of Hematology ; 2018
    In:  Blood Vol. 132, No. Supplement 1 ( 2018-11-29), p. 2559-2559
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 2559-2559
    Abstract: JAK inhibitors are being developed to treat inflammatory, myeloproliferative and neoplastic disorders. Murine and human studies have demonstrated an essential role for JAK2 in the proliferation of hematopoietic stem/progenitor cells (HSPC) and multiple hematopoietic lineages, including erythrocytes and megakaryocytes, while Jak1 murine studies have shown a role in HSPC proliferation and myelopoiesis, but not in megakaryopoiesis. Patients enrolled in clinical studies of INCB052793, which selectively binds to JAK1, have shown thrombocytopenia occurring within 2 weeks. The aim of this study was to elucidate the basis for thrombocytopenia associated with this JAK1 inhibitor, in comparison to INCB026115, which inhibits JAK2 more so than Jak1 (Jak2/1). Knowing the precise mechanism by which Jak inhibitors induce thrombocytopenia may lead to therapeutic strategies limiting side effects, while preserving intended clinical application. We tested a broad concentration range of each of these Jak1 and Jak2/1 inhibitors from IC50 (40 and 30nM, respectively) to IC90 (400 and 300nM) to 10xIC90 (4 and 3 µM) on mobilized progenitor-derived CD34+ cells incubated 12-14 days under semisolid and under liquid conditions, focusing on effects on megakaryocyte (Meg) and platelet production. At IC90, the Jak1-selective inhibitor limited large Meg colony number to 47±8% of untreated control in semisolid growth conditions. Under similar concentrations in liquid growth conditions, the number of Megs seen was 45±8% of the untreated controls, but with a 139±17% higher level of ≥8N Megs. Agonist response of mature Megs to thrombin was not compromised. Total number of healthy, in vitro-released, platelet-like particles (PLPs) collected from Jak1-exposed cultures at Day 12 was reduced to 57±14% of the control, and similar to the decrease in Meg yield. At a similar level of inhibition, the Jak2/1 inhibitor was more robust at inhibiting megakaryopoiesis. At IC90, the Jak2/1 inhibitor fully inhibited development of large Meg colonies and reduced the number of small colonies to 43±14% of untreated control. Under liquid growth conditions, the number of Megs seen at Day 12 was 20±9% of the untreated controls, but with 132±28% higher % of ≥8N Megs. Agonist response of mature Megs was not compromised. Total number of healthy PLPs collected at Day 12 was insignificantly different despite much lower Meg yield. More detailed Jak2/1 inhibitor cultures analysis revealed enhanced Meg apoptosis by 209±61% at Day 7, and accelerated maturation as indicated by a 2-fold and 3-fold mpl receptor level at Days 7 and 11 and 321±217% higher number of Megs 〉 2N at Day 7. As opposite to what might be expected, thrombopoiesis appeared not to be impaired by the Jak2/1 inhibitor. Inhibitor-treated Megs released similar or higher number of platelets per Meg as untreated controls upon their infusion into immunocompromized NSG mice, with similar high levels of young, thiazole orange-positive, low apoptotic, Annexin-V+ platelets. Baseline released platelet CD62p expression and PAC1 binding prior to agonist exposure were similar and increased to the same extent after thrombin (0.1-10U/ml) stimulation. In contrast, Jak1 inhibitor-treated Megs had ~50% lower number of released human platelets upon infusion into NSG mice although the released platelets were healthy and responsive to agonists. In summary, our results shed significant insight into the mechanisms of Jak1 inhibitor-associated thrombocytopenia observed in patients. We show that thrombocytopenia post the Jak2/1 inhibitor INCB026115 is due to impaired megakaryopoiesis with intact thrombopoiesis and functional, released platelets. In contrast, thrombocytopenia post the Jak1 inhibitor INCB052793 is a result of combined impairment of both megakaryopoiesis and thrombopoiesis, although the released platelets appear intact. The exact pathways blocked by the Jak1 inhibitor important for thrombopoiesis remain to be defined. Also, as liver hepatocytes together with bone marrow stromal cells are a source of thrombopoietin (TPO), and Jak1 and Jak2 are known to be involved in regulation of TPO production, studies to check the influence of Jak inhibitors on TPO production from both hepatocytes and marrow stromal cells are needed to fully understand the influence of Jak inhibitors on megakaryopoiesis/thrombopoiesis. Disclosures Jarocha: Incyte Corporation: Consultancy, Research Funding. Gadue:Incyte Corporation: Consultancy, Research Funding. Tong:Incyte Corporation: Consultancy, Research Funding. Newton:Incyte Research Institute: Employment, Equity Ownership. Poncz:Incyte Corporation: Consultancy, Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Haematologica, Ferrata Storti Foundation (Haematologica), Vol. 106, No. 5 ( 2020-05-21), p. 1433-1442
    Abstract: β-thalassemia is a disorder caused by altered hemoglobin protein synthesis and affects individuals worldwide. Severe forms of the disease, left untreated, can result in death before the age of 3 years (1). The standard of care consists of chronic and costly palliative treatment by blood transfusion combined with iron chelation. This dual approach suppresses anemia and reduces iron-related toxicities in patients. Allogeneic bone marrow transplant is an option, but limited by the availability of a highly compatible HSC donor. While gene therapy is been explored in several trials, its use is highly limited to developed regions with centers of excellence and well-established healthcare systems (2). Hence, there remains a tremendous unmet medical need to develop alternative treatment strategies for β-thalassemia (3). Occurrence of aberrant splicing is one of the processes that affects β-globin synthesis in β-thalassemia. The (C 〉 G) IVS-2-745 is a splicing mutation within intron 2 of the β-globin gene. It leads to an aberrantly spliced mRNA that incorporates an intron fragment. This results in an in-frame premature termination codon that inhibits β-globin production. Here, we propose the use of uniform 2'-O-methoxyethyl (2'-MOE) splice switching oligos (SSOs) to reverse this aberrant splicing in the pre-mRNA. With these lead SSOs we show aberrant to wild type splice switching. This switching leads to an increase of adult hemoglobin (HbA) up to 80% in erythroid cells from patients with the IVS-2-745 mutation. Furthermore, we demonstrate a restoration of the balance between β-like- and α-globin chains, and up to an 87% reduction in toxic α-heme aggregates. While examining the potential benefit of 2'-MOE-SSOs in a mixed sickle-thalassemic phenotypic setting, we found reduced HbS synthesis and sickle cell formation due to HbA induction. In summary, 2'-MOE-SSOs are a promising therapy for forms of β-thalassemia caused by mutations leading to aberrant splicing.
    Type of Medium: Online Resource
    ISSN: 1592-8721 , 0390-6078
    Language: Unknown
    Publisher: Ferrata Storti Foundation (Haematologica)
    Publication Date: 2020
    detail.hit.zdb_id: 2333-4
    detail.hit.zdb_id: 2030158-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...