GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Copernicus GmbH ; 2022
    In:  Weather and Climate Dynamics Vol. 3, No. 3 ( 2022-09-26), p. 1113-1138
    In: Weather and Climate Dynamics, Copernicus GmbH, Vol. 3, No. 3 ( 2022-09-26), p. 1113-1138
    Abstract: Abstract. It has long been recognized that a rich variety of Alpine south-foehn flavours exist that are related to varying flow conditions above crest level, the presence and intensity of orographic precipitation on the Alpine south side, and the Po Valley stratification. This study presents a systematic 5-year climatology of different foehn types. The classification relies on 2329 foehn hours, which are diagnosed using a station-based foehn index for Altdorf in the Swiss Reuss Valley. Operational analyses at 1 km horizontal resolution are employed to classify foehn hours with a decision tree that is based on foehn forecasting experience. Mean wind direction and speed in a circle with 100 km radius centred around Altdorf are considered to differentiate between three main foehn types (deep foehn, shallow foehn, gegenstrom foehn). In addition, upstream precipitation and its extent beyond the Alpine crest are used to distinguish three deep-foehn subtypes (dry foehn, moist foehn, dimmer foehn). The main foehn types differ distinctively in the synoptic conditions over the Alps. During deep foehn, pronounced southwesterlies ahead of an upper-level trough induce upstream orographic precipitation. Shallow foehn, in turn, is associated with cross-Alpine temperature differences that provoke a gap flow. The gegenstrom-foehn type is also restricted to major gaps, but a strong westerly flow prevails above crest level. The deep-foehn subtypes primarily differ in terms of the upper-level trough. While a weaker trough and the influence of an upper-level ridge over the Mediterranean inhibit precipitation (dry foehn), a deeper trough which is closer to the Alps induces stronger crest-level winds and intense precipitation on the Alpine south side (dimmer foehn). The different foehn types are found to strongly affect the local characteristics at Altdorf, which are investigated using station measurements. Backward trajectories from Altdorf are calculated for each of the foehn hours and used to define three clusters of air parcels depending upon their upstream thermodynamic evolution. Trajectories in cluster 1 are diabatically heated and transported within a low-level easterly barrier jet in the Po Valley prior to their ascent to crest level. They constitute the main precipitating airstream and, hence, are of key importance for moist foehn and dimmer foehn. Cluster-2 and cluster-3 trajectories are subject to weak diabatic heating or even diabatic cooling. They originate from southerly to southwesterly regions and from either slightly below or above crest level. Accordingly, these air parcels are associated with little to no precipitation, and as such, they take a key role for dry foehn, shallow foehn and gegenstrom foehn. Furthermore, these three foehn types feature a pronounced stable layer over the Po Valley, which, to some extent, inhibits air parcels to ascend from lower levels. In summary, the study introduces a systematic classification of south foehn using state-of-the-art data sets. It concludes by setting the new classification into a historic context and revisiting the rich body of literature with respect to different Alpine south-foehn types. In particular, analogies to and discrepancies with the existing conceptual models of “Swiss foehn” and “Austrian foehn” are discussed.
    Type of Medium: Online Resource
    ISSN: 2698-4016
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2982467-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Wiley ; 2022
    In:  Quarterly Journal of the Royal Meteorological Society Vol. 148, No. 746 ( 2022-07), p. 2063-2085
    In: Quarterly Journal of the Royal Meteorological Society, Wiley, Vol. 148, No. 746 ( 2022-07), p. 2063-2085
    Abstract: Foehn flows are associated with a characteristic warming of the respective air in lee‐side valleys. Recent studies about the physical mechanisms question the traditional thermodynamic foehn theory, pointing out the potential role of adiabatic descent and other diabatic processes, besides upstream latent heating in clouds, for the warming. This study applies a kilometre‐scale simulation together with online trajectories and a Lagrangian heat budget to investigate the foehn air warming for an intense, long‐lasting Alpine south foehn period in November 2016. Thereby, the focus lies on the attribution of the warming to adiabatic descent and the different diabatic processes in six foehn valleys, as well as the linkage of the warming processes to different airstreams. Overall, adiabatic warming emerges as the most important process for 57% of all air parcels arriving in the foehn valleys. However, upstream latent heating in clouds is the dominant mechanism for a considerable amount of air parcels (35%). The heat budget analysis reveals a clear transition along the Alps from west to east, whereat diabatic warming constitutes the driving mechanism for western valleys during the central phase of the event, and adiabatic warming dominates the foehn air warming in eastern valleys. The foehn trajectories can be separated into different air‐stream categories according to their diabatic temperature change. Air parcels experiencing strong diabatic heating are transported in an easterly barrier jet in the Po Valley before crossing the Alpine crest. Air parcels experiencing diabatic cooling, in contrast, are advected quasi‐horizontally from the south towards the Alpine crest prior to their descent. The relative strength of the different airstreams therefore determines the dominating warming process. These findings strongly point to the combined importance of adiabatic and diabatic warming mechanisms, which co‐occur with varying relative contributions, depending on the valley and time period of the event.
    Type of Medium: Online Resource
    ISSN: 0035-9009 , 1477-870X
    URL: Issue
    RVK:
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 3142-2
    detail.hit.zdb_id: 2089168-4
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2021
    In:  Weather and Forecasting ( 2021-09-15)
    In: Weather and Forecasting, American Meteorological Society, ( 2021-09-15)
    Abstract: This study explores the possibilities of employing machine learning algorithms to predict foehn occurrence in Switzerland at a north-Alpine (Altdorf) and south-Alpine (Lugano) station from its synoptic fingerprint in reanalysis data and climate simulations. This allows for an investigation on a potential future shift in monthly foehn frequencies. First, inputs from various atmospheric fields from the European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis-Interim (ERAI) were used to train an XGBoost model. Here, similar predictive performance to previous work was achieved, showing that foehn can accurately be diagnosed from the coarse synoptic situation. In the next step, the algorithm was generalized to predict foehn based on Community Earth System Model (CESM) ensemble simulations of a present-day and warming future climate. The best generalization between ERAI and CESM was obtained by including the present-day data in the training procedure and simultaneously optimizing two objective functions, namely the negative log loss and squared mean loss, on both datasets, respectively. It is demonstrated that the same synoptic fingerprint can be identified in CESM climate simulation data. Finally, predictions for present-day and future simulations were verified and compared for statistical significance. Our model is shown to produce valid output for most months, revealing that south foehn in Altdorf is expected to become more common during spring, while north foehn in Lugano is expected to become more common during summer.
    Type of Medium: Online Resource
    ISSN: 0882-8156 , 1520-0434
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2021
    detail.hit.zdb_id: 2025194-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Schweizerbart ; 2023
    In:  Meteorologische Zeitschrift ( 2023-01-01)
    In: Meteorologische Zeitschrift, Schweizerbart, ( 2023-01-01)
    Type of Medium: Online Resource
    ISSN: 0941-2948
    Uniform Title: Is it foehn or sea breeze? Eulerian and Lagrangian analysis of the flow in the Jordan Valley
    RVK:
    Language: English , English
    Publisher: Schweizerbart
    Publication Date: 2023
    detail.hit.zdb_id: 511391-X
    detail.hit.zdb_id: 2045168-4
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Weather and Climate Dynamics, Copernicus GmbH, Vol. 2, No. 2 ( 2021-04-14), p. 331-357
    Abstract: Abstract. Meridional atmospheric transport is an important process in the climate system and has implications for the availability of heat and moisture at high latitudes. Near-surface cold and warm temperature advection over the ocean in the context of extratropical cyclones additionally leads to important air–sea exchange. In this paper, we investigate the impact of these air–sea fluxes on the stable water isotope (SWI) composition of water vapour in the Southern Ocean's atmospheric boundary layer. SWIs serve as a tool to trace phase change processes involved in the atmospheric water cycle and, thus, provide important insight into moist atmospheric processes associated with extratropical cyclones. Here we combine a 3-month ship-based SWI measurement data set around Antarctica with a series of regional high-resolution numerical model simulations from the isotope-enabled numerical weather prediction model COSMOiso. We objectively identify atmospheric cold and warm temperature advection associated with the cold and warm sector of extratropical cyclones, respectively, based on the air–sea temperature difference applied to the measurement and the simulation data sets. A Lagrangian composite analysis of temperature advection based on the COSMOiso simulation data is compiled to identify the main processes affecting the observed variability of the isotopic signal in marine boundary layer water vapour in the region from 35 to 70∘ S. This analysis shows that the cold and warm sectors of extratropical cyclones are associated with contrasting SWI signals. Specifically, the measurements show that the median values of δ18O and δ2H in the atmospheric water vapour are 3.8 ‰ and 27.9 ‰ higher during warm than during cold advection. The median value of the second-order isotope variable deuterium excess d, which can be used as a measure of non-equilibrium processes during phase changes, is 6.4 ‰ lower during warm than during cold advection. These characteristic isotope signals during cold and warm advection reflect the opposite air–sea fluxes associated with these large-scale transport events. The trajectory-based analysis reveals that the SWI signals in the cold sector are mainly shaped by ocean evaporation. In the warm sector, the air masses experience a net loss of moisture due to dew deposition as they are advected over the relatively colder ocean, which leads to the observed low d. We show that additionally the formation of clouds and precipitation in moist adiabatically ascending warm air parcels can decrease d in boundary layer water vapour. These findings illustrate the highly variable isotopic composition in water vapour due to contrasting air–sea interactions during cold and warm advection, respectively, induced by the circulation associated with extratropical cyclones. SWIs can thus potentially be useful as tracers for meridional air advection and other characteristics associated with the dynamics of the storm tracks over interannual timescales.
    Type of Medium: Online Resource
    ISSN: 2698-4016
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2982467-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...