GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Clinical Genetics, Wiley, Vol. 101, No. 2 ( 2022-02), p. 190-207
    Abstract: Cerebrotendinous xanthomatosis (CTX) is an inborn error of metabolism caused by recessive variants in the cytochrome P450 CYP27A1 gene. CTX is said to manifest with childhood‐onset chronic diarrhea and the classic triad of juvenile‐onset cataracts, Achilles tendons xanthomas, and progressive ataxia. It is currently one of the few inherited neurometabolic disorders amenable to a specific treatment. The diagnosis may be significantly delayed resulting in permanent neurological impairment. A retrospective review of the clinical characteristics and diagnostic findings in case series of six Polish patients with CTX. Additional retrospective review of symptoms and pathogenic variants of 568 CTX available cases and case series from the past 20 years. To the best of our knowledge, this is the widest review of CTX cases reported in years 2000–2021. We report the largest cohort of Polish patients ever published, with the identification of two hot‐spot mutations. During the review of available 568 cases, we found significant differences in the clinical phenotypes and the localization of variants within the gene between Asian and non‐Asian populations. These findings may facilitate molecular testing in the Polish and Asian populations. Invariably better screening for CTX and wider awareness is needed.
    Type of Medium: Online Resource
    ISSN: 0009-9163 , 1399-0004
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2004581-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Association for Computing Machinery (ACM) ; 2017
    In:  ACM SIGPLAN Notices Vol. 52, No. 8 ( 2017-10-26), p. 267-281
    In: ACM SIGPLAN Notices, Association for Computing Machinery (ACM), Vol. 52, No. 8 ( 2017-10-26), p. 267-281
    Abstract: The current design trend in large scale machine learning is to use distributed clusters of CPUs and GPUs with MapReduce-style programming. Some have been led to believe that this type of horizontal scaling can reduce or even eliminate the need for traditional algorithm development, careful parallelization, and performance engineering. This paper is a case study showing the contrary: that the benefits of algorithms, parallelization, and performance engineering, can sometimes be so vast that it is possible to solve "cluster-scale" problems on a single commodity multicore machine. Connectomics is an emerging area of neurobiology that uses cutting edge machine learning and image processing to extract brain connectivity graphs from electron microscopy images. It has long been assumed that the processing of connectomics data will require mass storage, farms of CPU/GPUs, and will take months (if not years) of processing time. We present a high-throughput connectomics-on-demand system that runs on a multicore machine with less than 100 cores and extracts connectomes at the terabyte per hour pace of modern electron microscopes.
    Type of Medium: Online Resource
    ISSN: 0362-1340 , 1558-1160
    Language: English
    Publisher: Association for Computing Machinery (ACM)
    Publication Date: 2017
    detail.hit.zdb_id: 2079194-X
    detail.hit.zdb_id: 282422-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...