GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Copernicus GmbH ; 2021
    In:  Atmospheric Chemistry and Physics Vol. 21, No. 11 ( 2021-06-03), p. 8437-8454
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 21, No. 11 ( 2021-06-03), p. 8437-8454
    Abstract: Abstract. Recent observations have shown the ubiquitous presence of iodine oxide (IO) in the Indian Ocean marine boundary layer (MBL). In this study, we use the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem version 3.7.1), including halogen (Br, Cl, and I) sources and chemistry, to quantify the impacts of the observed levels of iodine on the chemical composition of the MBL. The model results show that emissions of inorganic iodine species resulting from the deposition of ozone (O3) on the sea surface are needed to reproduce the observed levels of IO, although the current parameterizations overestimate the atmospheric concentrations. After reducing the inorganic emissions by 40 %, a reasonable match with cruise-based observations is found, with the model predicting values between 0.1 and 1.2 pptv across the model domain MBL. A strong seasonal variation is also observed, with lower iodine concentrations predicted during the monsoon period, when clean oceanic air advects towards the Indian subcontinent, and higher iodine concentrations predicted during the winter period, when polluted air from the Indian subcontinent increases the ozone concentrations in the remote MBL. The results show that significant changes are caused by the inclusion of iodine chemistry, with iodine-catalysed reactions leading to regional changes of up to 25 % in O3, 50 % in nitrogen oxides (NO and NO2), 15 % in hydroxyl radicals (OH), 25 % in hydroperoxyl radicals (HO2), and up to a 50 % change in the nitrate radical (NO3), with lower mean values across the domain. Most of the large relative changes are observed in the open-ocean MBL, although iodine chemistry also affects the chemical composition in the coastal environment and over the Indian subcontinent. These results show the importance of including iodine chemistry in modelling the atmosphere in this region.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Elsevier BV ; 2016
    In:  Journal of Magnetism and Magnetic Materials Vol. 418 ( 2016-11), p. 175-180
    In: Journal of Magnetism and Magnetic Materials, Elsevier BV, Vol. 418 ( 2016-11), p. 175-180
    Type of Medium: Online Resource
    ISSN: 0304-8853
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2016
    detail.hit.zdb_id: 1479000-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 20, No. 20 ( 2020-10-26), p. 12093-12114
    Abstract: Abstract. Iodine chemistry has noteworthy impacts on the oxidising capacity of the marine boundary layer (MBL) through the depletion of ozone (O3) and changes to HOx (OH∕HO2) and NOx (NO∕NO2) ratios. Hitherto, studies have shown that the reaction of atmospheric O3 with surface seawater iodide (I−) contributes to the flux of iodine species into the MBL mainly as hypoiodous acid (HOI) and molecular iodine (I2). Here, we present the first concomitant observations of iodine oxide (IO), O3 in the gas phase, and sea surface iodide concentrations. The results from three field campaigns in the Indian Ocean and the Southern Ocean during 2015–2017 are used to compute reactive iodine fluxes in the MBL. Observations of atmospheric IO by multi-axis differential optical absorption spectroscopy (MAX-DOAS) show active iodine chemistry in this environment, with IO values up to 1 pptv (parts per trillion by volume) below latitudes of 40∘ S. In order to compute the sea-to-air iodine flux supporting this chemistry, we compare previously established global sea surface iodide parameterisations with new region-specific parameterisations based on the new iodide observations. This study shows that regional changes in salinity and sea surface temperature play a role in surface seawater iodide estimation. Sea–air fluxes of HOI and I2, calculated from the atmospheric ozone and seawater iodide concentrations (observed and predicted), failed to adequately explain the detected IO in this region. This discrepancy highlights the need to measure direct fluxes of inorganic and organic iodine species in the marine environment. Amongst other potential drivers of reactive iodine chemistry investigated, chlorophyll a showed a significant correlation with atmospheric IO (R=0.7 above the 99 % significance level) to the north of the polar front. This correlation might be indicative of a biogenic control on iodine sources in this region.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    IOP Publishing ; 2016
    In:  Journal of Physics D: Applied Physics Vol. 49, No. 5 ( 2016-02-10), p. 055001-
    In: Journal of Physics D: Applied Physics, IOP Publishing, Vol. 49, No. 5 ( 2016-02-10), p. 055001-
    Type of Medium: Online Resource
    ISSN: 0022-3727 , 1361-6463
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2016
    detail.hit.zdb_id: 209221-9
    detail.hit.zdb_id: 1472948-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Earth System Science Data, Copernicus GmbH, Vol. 14, No. 7 ( 2022-07-05), p. 2963-2987
    Abstract: Abstract. This paper presents an updated estimation of the bottom-up global surface seawater dimethyl sulfide (DMS) climatology. This update, called DMS-Rev3, is the third of its kind and includes five significant changes from the last climatology, L11 (Lana et al., 2011), that was released about a decade ago. The first change is the inclusion of new observations that have become available over the last decade, creating a database of 873 539 observations leading to an ∼ 18-fold increase in raw data as compared to the last estimation. The second is significant improvements in data handling, processing, and filtering, to avoid biases due to different observation frequencies which result from different measurement techniques. Thirdly, we incorporate the dynamic seasonal changes observed in the geographic boundaries of the ocean biogeochemical provinces. The fourth change involves the refinement of the interpolation algorithm used to fill in the missing data. Lastly, an upgraded smoothing algorithm based on observed DMS variability length scales (VLS) helps to reproduce a more realistic distribution of the DMS concentration data. The results show that DMS-Rev3 estimates the global annual mean DMS concentration to be ∼ 2.26 nM (2.39 nM without a sea-ice mask), i.e., about 4 % lower than the previous bottom-up L11 climatology. However, significant regional differences of more than 100 % as compared to L11 are observed. The global sea-to-air flux of DMS is estimated at ∼ 27.1 TgS yr−1, which is about 4 % lower than L11, although, like the DMS distribution, large regional differences were observed. The largest changes are observed in high concentration regions such as the polar oceans, although oceanic regions that were under-sampled in the past also show large differences between revisions of the climatology. Finally, DMS-Rev3 reduces the previously observed patchiness in high productivity regions. The new climatology, along with the algorithm, can be found in the online repository: https://doi.org/10.17632/hyn62spny2.1 (Mahajan, 2021).
    Type of Medium: Online Resource
    ISSN: 1866-3516
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2475469-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...