GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 457-457
    Abstract: Macrophages are responsible for protecting the body against foreign invaders. We have been studying the role of Grb2-associated binding proteins (Gabs) in macrophage biology. In mice, Gabs are adaptor proteins that include three family members (Gab1, Gab2, and Gab3) that play critical regulatory roles in modulating cytokine receptor signaling. Gab2 knockout mice have no developmental defects but have impaired allergic responses, osteoclast defects, altered mast cell development, and altered hematopoiesis. Gab3 knockout mice have no defined phenotypes alone and although highly expressed in macrophages, a functional role was not found despite considerable focus on this cell type. Therefore, we set out to determine the combined role of Gab2 and Gab3 to determine whether they performed redundant functions not observable in single knockout mice. To analyze regulation of macrophage cytokine production, a Gab2/3 deficient mouse model was generated on the C57BL/6 background. Bone Marrow Derived Macrophages (BMDM) were expanded from the bone marrow (BM) of wild-type (WT), Gab2 and Gab3 single knockout and Gab2/3 knockout mice and found to similarly co-express CD11b and F4/80. However, Gab2/3 knockout BM produced only 30% of wild-type BMDM numbers. Despite reductions in BMDM absolute numbers, isolated BMDM demonstrated significant induction of pro-inflammatory cytokines TNF-α and IL-12 and anti-inflammatory cytokine IL-10 mRNA at baseline. Interestingly, after LPS stimulation (100ng/ml) we detected much greater induction of TNF-α and IL-12 mRNA and protein expression. Interestingly, despite increased IL-10 mRNA induction in Gab2/3 knockout BMDM, no IL-10 protein expression could be detected by Luminex assay. No changes were observed in production of interferon or STAT1 activation in these BMDM. Studies have shown that rapamycin treatment of macrophages suppresses mTORC1 and subsequently reduces IL-10 production and promotes pro-inflammatory cytokine production. Gab2 is known for its role in regulating the PI3K pathway through interactions with the p85 regulatory subunit of PI3K. Therefore, we also examined whether mTOR activation was effected by Gab2/3 deficiency causing altered cytokine expression. Deletion of Gab2/3 in BMDMs treated with LPS showed an inhibition of 4EBP1 phosphorylation and increased AKT phosphorylation. These results suggest that Gabs may play a critical role in modulating mTOR activation and potentially causing defects in protein translation that reflect in reduced IL-10 cytokine levels in Gab2/3 knockout cells. IL-10 has a critical immunoregulatory role that is dysregulated in patients with inflammatory bowel disease. IL-10 deficient mice develop colitis due to loss of mucosal immune tolerance. Strikingly, as early as two months of age in vivo 12/32 (37.5%) Gab2/3 knockout mice developed rectal prolapse and suffered from diarrhea within a six month period. Histological analysis of isolated colons using a scoring system confirmed spontaneous development of colitis in Gab2/3 knockout mice compared to no phenotypes observed in WT and single knockout controls. To determine whether the BM was directly involved in the disease, BM chimeras were generated using irradiated WT mice as recipients and Gab2/3 knockout mice as donors. Susceptible recipients receiving Gab2/3 knockout BM showed a more invasive colitis phenotype than the spontaneous disease and resulted in forced euthanization due to body weight decreases greater than 25%. Multiple ulcerations were present in most of the colon proximal region, with extensive epithelial damage, transmural inflammation, and in some mice adenocarcinoma. Notably, we did not observe adenocarcinoma in untransplanted Gab2/3 knockout mice, suggesting that epithelial deletion of Gab2/3 may suppress cancer whereas in the bone marrow chimera model, the epithelial cells are WT and can be transformed. Similar phenotypes were also observed in secondary transplant recipients. Lastly, treatment of Gab2/3 knockout mice with dextran-sodium-sulfate (DSS) induced rapid severe colitis that resulted in death of 80% and 40% of Gab2/3 knockout and WT mice respectively. Overall, these observations demonstrate a major redundant role for Gab2 and Gab3 in macrophage immune surveillance required for the prevention of colitis in mice. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Cold Spring Harbor Laboratory ; 2021
    In:  Learning & Memory Vol. 28, No. 4 ( 2021-04), p. 126-133
    In: Learning & Memory, Cold Spring Harbor Laboratory, Vol. 28, No. 4 ( 2021-04), p. 126-133
    Abstract: Dysfunctions in memory recall lead to pathological fear; a hallmark of trauma-related disorders, like posttraumatic stress disorder (PTSD). Both, heightened recall of an association between a cue and trauma, as well as impoverished recall that a previously trauma-related cue is no longer a threat, result in a debilitating fear toward the cue. Glucocorticoid-mediated action via the glucocorticoid receptor (GR) influences memory recall. This literature has primarily focused on GRs expressed in neurons or ignored cell-type specific contributions. To ask how GR action in nonneuronal cells influences memory recall, we combined auditory fear conditioning in mice and the knockout of GRs in astrocytes in the prefrontal cortex (PFC), a brain region implicated in memory recall. We found that knocking out GRs in astrocytes of the PFC disrupted memory recall. Specifically, we found that knocking out GRs in astrocytes in the PFC (AstroGRKO) after fear conditioning resulted in higher levels of freezing to the CS+ tone when compared with controls (AstroGRintact). While we did not find any differences in extinction of fear toward the CS+ between these groups, AstroGRKO female but not male mice showed impaired recall of extinction training. These results suggest that GRs in cortical astrocytes contribute to memory recall. These data demonstrate the need to examine GR action in cortical astrocytes to elucidate the basic neurobiology underlying memory recall and potential mechanisms that underlie female-specific biases in the incidence of PTSD.
    Type of Medium: Online Resource
    ISSN: 1549-5485
    Language: English
    Publisher: Cold Spring Harbor Laboratory
    Publication Date: 2021
    detail.hit.zdb_id: 2022057-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Biophysical Journal, Elsevier BV, Vol. 112, No. 3 ( 2017-02), p. 411a-
    Type of Medium: Online Resource
    ISSN: 0006-3495
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2017
    detail.hit.zdb_id: 1477214-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 7, No. 1 ( 2017-10-18)
    Abstract: Fishes rely on both chemical and tactile senses to orient themselves to avoid predators, and to detect and taste food. This is likely achieved by highly coordinated reception of signals by mechano- and chemosensory receptors in fish. A small co-receptor from zebrafish, receptor activity modifying protein (RAMP)-like triterpene glycoside receptor (RL-TGR), was previously found to be involved in recognition of triterpene glycosides, a family of naturally occurring compounds that act as chemical defenses in various prey species. However, its localization, function, and how it impacts sensory organ development in vivo is not known. Here we show that RL-TGR is expressed in zebrafish in both i) apical microvilli of the chemosensory cells of taste buds including the epithelium of lips and olfactory epithelium, and ii) mechanosensory cells of neuromasts belonging to the lateral line system. Loss-of-function analyses of RL-TGR resulted in significantly decreased number of neuromasts in the posterior lateral line system and decreased body length, suggesting that RL-TGR is involved in deposition and migration of the neuromasts. Collectively, these results provide the first in vivo genetic evidence of sensory cell-specific expression of this unusual co-receptor and reveal its additional role in the lateral line development in zebrafish.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2017
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Walter de Gruyter GmbH ; 2011
    In:  Cellular and Molecular Biology Letters Vol. 16, No. 1 ( 2011-01-1)
    In: Cellular and Molecular Biology Letters, Walter de Gruyter GmbH, Vol. 16, No. 1 ( 2011-01-1)
    Abstract: Development is an orderly process that requires the timely activation and/or deactivation of specific regulatory elements that control cellular proliferation, differentiation and apoptosis. While many studies have defined factors that control developmental signaling, the role of intracellular reduction/oxidation (redox) status as a means to control differentiation has not been fully studied. Redox states of intracellular couples may play a very important role in regulating redox-sensitive elements that are involved in differentiation signaling into specific phenotypes. In human mesenchymal stem cells (hMSCs), which are capable of differentiating into many different types of phenotypes, including osteoblasts and adipocytes, glutathione (GSH), cysteine (Cys) and thioredoxin-1 (Trx1) redox potentials were measured during adipogenesis and osteogenesis. GSH redox potentials (Eh) during both osteogenesis and adipogenesis became increasingly oxidized as differentiation ensued, but the rate at which this oxidation occurred was unique for each process. During adipogenesis, Cys Eh became oxidized as adipogenesis progressed but during osteogenesis, it became reduced. Interestingly, intracellular Trx1 concentrations appeared to increase in both adipogenesis and osteogenesis, but the Eh was unchanged when compared to undifferentiated hMSCs. These data show that hMSC differentiation into either adipocytes of osteoblasts corresponds to a unique redox state profile, suggesting that differentiation into specific phenotypes are likely regulated by redox states that are permissive to a specific developmental process.
    Type of Medium: Online Resource
    ISSN: 1689-1392
    Language: Unknown
    Publisher: Walter de Gruyter GmbH
    Publication Date: 2011
    detail.hit.zdb_id: 2108724-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2002
    In:  Proceedings of the National Academy of Sciences Vol. 99, No. 6 ( 2002-03-19), p. 3523-3528
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 99, No. 6 ( 2002-03-19), p. 3523-3528
    Abstract: 8-oxoguanine (8-oxoG), ring-opened purines (formamidopyrimidines or Fapys), and other oxidized DNA base lesions generated by reactive oxygen species are often mutagenic and toxic, and have been implicated in the etiology of many diseases, including cancer, and in aging. Repair of these lesions in all organisms occurs primarily via the DNA base excision repair pathway, initiated with their excision by DNA glycosylase/AP lyases, which are of two classes. One class utilizes an internal Lys residue as the active site nucleophile, and includes Escherichia coli Nth and both known mammalian DNA glycosylase/AP lyases, namely, OGG1 and NTH1. E. coli MutM and its paralog Nei, which comprise the second class, use N-terminal Pro as the active site. Here, we report the presence of two human orthologs of E. coli mutM nei genes in the human genome database, and characterize one of their products. Based on the substrate preference, we have named it NEH1 (Nei homolog). The 44-kDa, wild-type recombinant NEH1, purified to homogeneity from E. coli , excises Fapys from damaged DNA, and oxidized pyrimidines and 8-oxoG from oligodeoxynucleotides. Inactivation of the enzyme because of either deletion of N-terminal Pro or Histag fusion at the N terminus supports the role of N-terminal Pro as its active site. The tissue-specific levels of NEH1 and OGG1 mRNAs are distinct, and S phase-specific increase in NEH1 at both RNA and protein levels suggests that NEH1 is involved in replication-associated repair of oxidized bases.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2002
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Elsevier BV ; 2018
    In:  Biophysical Journal Vol. 114, No. 3 ( 2018-02), p. 488a-
    In: Biophysical Journal, Elsevier BV, Vol. 114, No. 3 ( 2018-02), p. 488a-
    Type of Medium: Online Resource
    ISSN: 0006-3495
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2018
    detail.hit.zdb_id: 1477214-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Biophysical Journal, Elsevier BV, Vol. 116, No. 3 ( 2019-02), p. 222a-
    Type of Medium: Online Resource
    ISSN: 0006-3495
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2019
    detail.hit.zdb_id: 1477214-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Physiological Society ; 2016
    In:  American Journal of Physiology-Lung Cellular and Molecular Physiology Vol. 311, No. 2 ( 2016-08-01), p. L192-L207
    In: American Journal of Physiology-Lung Cellular and Molecular Physiology, American Physiological Society, Vol. 311, No. 2 ( 2016-08-01), p. L192-L207
    Abstract: VX-770 (Ivacaftor) has been approved for clinical usage in cystic fibrosis patients with several CFTR mutations. Yet the binding site(s) on CFTR for this compound and other small molecule potentiators are unknown. We hypothesize that insight into this question could be gained by comparing the effect of potentiators on CFTR channels from different origins, e.g., human, mouse, and Xenopus (frog). In the present study, we combined this comparative molecular pharmacology approach with that of computer-aided drug discovery to identify and characterize new potentiators of CFTR and to explore possible mechanism of action. Our results demonstrate that 1) VX-770, NPPB, GlyH-101, P1, P2, and P3 all exhibited ortholog-specific behavior in that they potentiated hCFTR, mCFTR, and xCFTR with different efficacies; 2) P1, P2, and P3 potentiated hCFTR in excised macropatches in a manner dependent on the degree of PKA-mediated stimulation; 3) P1 and P2 did not have additive effects, suggesting that these compounds might share binding sites. Also 4) using a pharmacophore modeling approach, we identified three new potentiators (IOWH-032, OSSK-2, and OSSK-3) that have structures similar to GlyH-101 and that also exhibit ortholog-specific potentiation of CFTR. These could potentially serve as lead compounds for development of new drugs for the treatment of cystic fibrosis. The ortholog-specific behavior of these compounds suggest that a comparative pharmacology approach, using cross-ortholog chimeras, may be useful for identification of binding sites on human CFTR.
    Type of Medium: Online Resource
    ISSN: 1040-0605 , 1522-1504
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2016
    detail.hit.zdb_id: 1477300-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Journal of Biological Chemistry, Elsevier BV, Vol. 277, No. 34 ( 2002-08), p. 30417-30420
    Type of Medium: Online Resource
    ISSN: 0021-9258
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2002
    detail.hit.zdb_id: 2141744-1
    detail.hit.zdb_id: 1474604-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...