GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2008
    In:  Forensic Science, Medicine, and Pathology Vol. 4, No. 1 ( 2008-3), p. 33-39
    In: Forensic Science, Medicine, and Pathology, Springer Science and Business Media LLC, Vol. 4, No. 1 ( 2008-3), p. 33-39
    Type of Medium: Online Resource
    ISSN: 1547-769X , 1556-2891
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2008
    detail.hit.zdb_id: 2195904-3
    SSG: 2
    SSG: 2,1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Pharmaceutics, MDPI AG, Vol. 15, No. 9 ( 2023-08-30), p. 2240-
    Abstract: Hydrogels are a favorable alternative to accelerate the burn wound healing process and skin regeneration owing to their capability of absorbing contaminated exudates. The bacterial infections that occur in burn wounds might be treated using different topically applied materials, but bacterial resistance to antibiotics has become a major problem worldwide. Therefore, the use of non-antibiotic treatments represents a major interest in current research. In this study, new antibiocomposite hydrogels with anti-inflammatory and antimicrobial properties based on hyaluronic acid (HA) and sodium alginate (AG) were obtained using 4-(4,6-dimethoxy-1,3,5-triazinyl-2)-4-methylmorpholinium chloride as an activator. The combination of Ibuprofen, a non-steroidal anti-inflammatory drug commonly used to reduce inflammation, fever and pain in the body, with zinc oxide nanoparticles (ZnO NPs) was used in this study aimed at creating a complex hydrogel with anti-inflammatory and antimicrobial action and capable of improving the healing process of wounds caused by burns. FTIR spectra confirmed the cross-linking of AG with HA as well as the successful incorporation of ZnO NPs. Using electronic microscopy, it was noticed that the morphology of hydrogels is influenced by the incorporation of ZnO nanoparticles. Moreover, the incorporation of ZnO nanoparticles into hydrogels also has an influence on the swelling behavior at both pH 7.4 and 5.4. In fact, the swelling rate is lower when the amounts of the activator, HA and ZnO NPs are high. A drug release rate of almost 100% was observed for hydrogels without ZnO NPs, whereas the addition of nanoparticles to hydrogels led to a decrease in the release rate to 68% during 24 h. Cellular viability tests demonstrated the non-cytotoxic behavior of the hydrogels without the ZnO NPs, whereas a weak to moderate cytotoxic effect was noticed for hydrogels with ZnO NPs. The hydrogels containing 4% and 5% ZnO NPs, respectively, showed good antimicrobial activity against the S. aureus strain. These preliminary data prove that these types of hydrogels can be of interest as biomaterials for the treatment of burn wounds.
    Type of Medium: Online Resource
    ISSN: 1999-4923
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2527217-2
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  Polymers Vol. 14, No. 15 ( 2022-07-25), p. 3007-
    In: Polymers, MDPI AG, Vol. 14, No. 15 ( 2022-07-25), p. 3007-
    Abstract: Bacterial oral diseases are chronic, and, therefore, require appropriate treatment, which involves various forms of administration and dosing of the drug. However, multimicrobial resistance is an increasing issue, which affects the global health system. In the present study, a commercial amphiphilic copolymer, Pluronic F127, was used for the encapsulation of 1-(5′-nitrobenzimidazole-2′-yl-sulphonyl-acetyl)-4-aryl-thiosemicarbazide, which is an original active pharmaceutical ingredient (API) previously synthesized and characterized by our group, at different copolymer/API weight ratios. The obtained micellar systems, with sizes around 20 nm, were stable during 30 days of storage at 4 °C, without a major increase of the Z-average sizes. As expected, the drug encapsulation and loading efficiencies varied with the copolymer/API ratio, the highest values of 84.8 and 11.1%, respectively being determined for the F127/API = 10/1 ratio. Moreover, in vitro biological tests have demonstrated that the obtained polymeric micelles (PMs) are both hemocompatible and cytocompatible. Furthermore, enhanced inhibition zones of 36 and 20 mm were observed for the sample F127/API = 2/1 against S. aureus and E. coli, respectively. Based on these encouraging results, it can be admitted that these micellar systems can be an efficient alternative for the treatment of bacterial oral diseases, being suitable either by injection or by a topical administration.
    Type of Medium: Online Resource
    ISSN: 2073-4360
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2527146-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Trans Tech Publications, Ltd. ; 2006
    In:  Key Engineering Materials Vol. 324-325 ( 2006-11), p. 1257-1260
    In: Key Engineering Materials, Trans Tech Publications, Ltd., Vol. 324-325 ( 2006-11), p. 1257-1260
    Abstract: Natural human tooth consists of multiple layered quasi-brittle biomaterials, which make dental restorations experience a complex stress state under masticatory contact loading. As such, many restorations are prone to failure and a constant effort is made to improve the mechanical characteristics of the restorative materials. Clinical observations have shown that improved strengths and fracture toughness in ceramic materials do not necessarily lead to an anticipated higher functional longevity of the restoration. While substantial experimental investigations have been carried out to identify the contact induced fracture in such multi-layer material systems, numerical modelling of this event was largely unexplored. This paper presents a new numerical method to account for micro-damage driven fracture in various multi-layered biomaterial structures. In this study, a Rankine constitutive model is adopted and the crack initiation and propagation are automatically implemented in an explicit finite element (FE) framework. The effects of indenter radius, surface curvature and thickness of layered biomaterials on the cracking patterns are investigated. The results show good agreement with the experimental studies in literature.
    Type of Medium: Online Resource
    ISSN: 1662-9795
    URL: Issue
    Language: Unknown
    Publisher: Trans Tech Publications, Ltd.
    Publication Date: 2006
    detail.hit.zdb_id: 2073306-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: e-Polymers, Walter de Gruyter GmbH, Vol. 7, No. 1 ( 2007-12-1)
    Abstract: An important method used to make medical implants radiologically visible is based on introduction of radiopaque bromine or iodine containing methacrylic monomers. Thus, 2-(2-bromopropionyloxy) propyl methacrylate (BPPM) and 2-(2-bromoisobutyryloxy) propyl methacrylate (BIPM) were synthesized with the aim to use them as radiopaque agents. The free radical initiated copolymerization of BPPM and BIPM with methyl methacrylate (MMA) were performed directly in a thermostatic cell of the NMR spectrometer. The copolymer compositions obtained from 1 H NMR spectra led to the determination of the reactivity ratios (r MMA = 1.08 ± 0.12; r BPPM = 1.01 ± 0.13 and r MMA = 0.95 ± 0.09; r BIPM = 0.95 ± 0.1). The reactivity ratios of these two monomers is similar to that of MMA suggesting that the length of the bromine containing monomers side chain does not affect significantly the reactivity of the methacrylic double bond. From the results we conclude the copolymers to have random structure.
    Type of Medium: Online Resource
    ISSN: 1618-7229 , 2197-4586
    Language: Unknown
    Publisher: Walter de Gruyter GmbH
    Publication Date: 2007
    detail.hit.zdb_id: 2060396-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2008
    In:  International Journal of Legal Medicine Vol. 122, No. 3 ( 2008-5), p. 179-187
    In: International Journal of Legal Medicine, Springer Science and Business Media LLC, Vol. 122, No. 3 ( 2008-5), p. 179-187
    Type of Medium: Online Resource
    ISSN: 0937-9827 , 1437-1596
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2008
    detail.hit.zdb_id: 1459222-8
    SSG: 2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Trans Tech Publications, Ltd. ; 2011
    In:  Advanced Materials Research Vol. 268-270 ( 2011-7), p. 853-856
    In: Advanced Materials Research, Trans Tech Publications, Ltd., Vol. 268-270 ( 2011-7), p. 853-856
    Abstract: Bioceramics have rapidly emerged as one of major biomaterials in modern biomedical applications because of its outstanding biocompatibility. However, one drawback is its low tensile strength and fracture toughness due to brittleness and inherent microstructural defects, which to a certain extent prevents the ceramics from fully replacing metals used as load-bearing prostheses. This paper aims to model the crack initiation and propagation in ceramic fixed partial denture, namely dental bridge, by using two recently developed methods namely continuum-to-discrete element method (CDEM) in ELFEN and extended finite element methods (XFEM) in ABAQUS. Unlike most existing studies that typically required prescriptions of initial cracks, these two new approaches will model crack initiation and propagation automatically. They are applied to a typical prosthodontic example, thereby demonstrating their applicability and effectiveness in biomedical applications.
    Type of Medium: Online Resource
    ISSN: 1662-8985
    URL: Issue
    Language: Unknown
    Publisher: Trans Tech Publications, Ltd.
    Publication Date: 2011
    detail.hit.zdb_id: 2265002-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Celsius Publishing House ; 2017
    In:  Chirurgia Vol. 112, No. 4 ( 2017), p. 486-
    In: Chirurgia, Celsius Publishing House, Vol. 112, No. 4 ( 2017), p. 486-
    Type of Medium: Online Resource
    ISSN: 1221-9118
    Language: English
    Publisher: Celsius Publishing House
    Publication Date: 2017
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    MDPI AG ; 2021
    In:  Molecules Vol. 26, No. 9 ( 2021-05-06), p. 2735-
    In: Molecules, MDPI AG, Vol. 26, No. 9 ( 2021-05-06), p. 2735-
    Abstract: Periodontal diseases are worldwide health problems that negatively affect the lifestyle of many people. The long-term effect of the classical treatments, including the mechanical removal of bacterial plaque, is not effective enough, causing the scientific world to find other alternatives. Polymer–drug systems, which have different forms of presentation, chosen depending on the nature of the disease, the mode of administration, the type of polymer used, etc., have become very promising. Hydrogels, for example (in the form of films, micro-/nanoparticles, implants, inserts, etc.), contain the drug included, encapsulated, or adsorbed on the surface. Biologically active compounds can also be associated directly with the polymer chains by covalent or ionic binding (polymer–drug conjugates). Not just any polymer can be used as a support for drug combination due to the constraints imposed by the fact that the system works inside the body. Biopolymers, especially polysaccharides and their derivatives and to a lesser extent proteins, are preferred for this purpose. This paper aims to review in detail the biopolymer–drug systems that have emerged in the last decade as alternatives to the classical treatment of periodontal disease.
    Type of Medium: Online Resource
    ISSN: 1420-3049
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2008644-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Pharmaceutics, MDPI AG, Vol. 13, No. 12 ( 2021-12-04), p. 2079-
    Abstract: Hydrogels based on natural and synthetic polymers and inorganic nanoparticles proved to be a viable strategy in the fight against some Gram-positive and Gram-negative bacteria. Additionally, numerous studies have demonstrated the advantages of using ZnO nanoparticles in medicine due to their high antibacterial efficacy and relatively low cost. Consequently, the purpose of our study was to incorporate ZnO nanoparticles into chitosan/poly (vinyl alcohol)-based hydrogels in order to obtain a biocomposite with antimicrobial properties. These biocomposite hydrogels, prepared by a double crosslinking (covalent and ionic) were characterized from a structural, morphological, swelling degree, and mechanical point of view. FTIR spectroscopy demonstrated both the apparition of new imine and acetal bonds due to covalent crosslinking and the presence of the sulfate group following ionic crosslinking. The morphology, swelling degree, and mechanical properties of the obtained hydrogels were influenced by both the degree of covalent crosslinking and the amount of ZnO nanoparticles incorporated. In vitro cytotoxicity assessment showed that hydrogels without ZnONPs are non-cytotoxic while the biocomposite hydrogels are weak (with 3% ZnONPs) or moderately (with 4 and 5% ZnONPs) cytotoxic. Compared to nanoparticle-free hydrogels, the biocomposite hydrogels show significant antimicrobial activity against S. aureus, E. coli, and K. pneumonia.
    Type of Medium: Online Resource
    ISSN: 1999-4923
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2527217-2
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...